Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Reprod Toxicol ; 129: 108679, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121979

RESUMO

This study aimed to investigate the protective effects of glucose selenol on cadmium (Cd)-induced testicular toxicity. Twenty-four male Sprague-Dawley (SD) rats were randomly divided into four groups. Cd was administered orally at a dose of 40 mg/L or in combination with orally administered glucose selenol at doses of 0.15 mg/L and 0.4 mg/L for 30 days. The results showed that sperm quality decreased and testicular tissue was damaged in the Cd group; Glucose selenol significantly attenuated the negative effects by improving sperm quality and reducing testicular damage. Transcriptome sequencing analysis showed that Cd stress affected spermatogenesis, sperm motility, oxidative stress, blood-testis barrier and protein metabolism. Four clusters were obtained using the R Mfuzz package, which clustered highly expressed genes under different administrations, and 36 items were enriched. Notably, protein phosphorylation was enriched in the Cd group and is considered to play a key role in the response to Cd stress. We identified fifty-six target selenium (Se) and Cd co-conversion differentially expressed genes (DEGs), including three genes relating to spermatogenesis (Dnah8, Spata31d1b, Spata31d1c). In addition, the obtained DEGs were used to construct a protein-protein interaction network, co-processed with Se and Cd, and 5 modules were constructed. Overall, the analyses of rat testicular physiology and gene expression levels offer new insights into the reproductive toxicity of Cd in rats, and provide potential application prospects for glucose selenol in alleviating the impact of Cd-induced testicular damage.

2.
Drug Resist Updat ; 74: 101085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636338

RESUMO

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.


Assuntos
Quebras de DNA de Cadeia Dupla , Resistencia a Medicamentos Antineoplásicos , Recombinação Homóloga , Quinase Syk , Quinase Syk/metabolismo , Quinase Syk/genética , Quinase Syk/antagonistas & inibidores , Humanos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fosforilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Reparo do DNA/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos
3.
Res Sq ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333340

RESUMO

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase known to regulate immune cell function, cell adhesion, and vascular development. Here, we report that Syk can be expressed in high grade serous ovarian cancer and triple negative breast cancers and promotes DNA double strand break resection, homologous recombination (HR) and therapeutic resistance. We found that Syk is activated by ATM following DNA damage and is recruited to DNA double strand breaks by NBS1. Once at the break site, Syk phosphorylates CtIP, a key mediator of resection and HR, at Thr-847 to promote repair activity, specifically in Syk expressing cancer cells. Syk inhibition or genetic deletion abolished CtIP Thr-847 phosphorylation and overcame the resistant phenotype. Collectively, our findings suggest that Syk drives therapeutic resistance by promoting DNA resection and HR through a novel ATM-Syk-CtIP pathway, and that Syk is a new tumor-specific target to sensitize Syk-expressing tumors to PARPi and other DNA targeted therapy.

4.
Mol Cell ; 83(7): 1043-1060.e10, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36854302

RESUMO

Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.


Assuntos
Cromatina , Reparo do DNA , Animais , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Mamíferos/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ciclo Celular/metabolismo
5.
Mol Cell ; 83(4): 539-555.e7, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36702126

RESUMO

Replication protein A (RPA) is a major regulator of eukaryotic DNA metabolism involved in multiple essential cellular processes. Maintaining appropriate RPA dynamics is crucial for cells to prevent RPA exhaustion, which can lead to replication fork breakage and replication catastrophe. However, how cells regulate RPA availability during unperturbed replication and in response to stress has not been well elucidated. Here, we show that HNRNPA2B1SUMO functions as an endogenous inhibitor of RPA during normal replication. HNRNPA2B1SUMO associates with RPA through recognizing the SUMO-interacting motif (SIM) of RPA to inhibit RPA accumulation at replication forks and impede local ATR activation. Declining HNRNPA2SUMO induced by DNA damage will release nuclear soluble RPA to localize to chromatin and enable ATR activation. Furthermore, we characterize that HNRNPA2B1 hinders homologous recombination (HR) repair via limiting RPA availability, thus conferring sensitivity to PARP inhibitors. These findings establish HNRNPA2B1 as a critical player in RPA-dependent surveillance networks.


Assuntos
Replicação do DNA , Proteína de Replicação A , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Replicação do DNA/genética , Sumoilação , Dano ao DNA , Cromatina/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
7.
Nat Cancer ; 3(9): 1088-1104, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36138131

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Characterization of genetic alterations will improve our understanding and therapies for this disease. Here, we report that PDAC with elevated expression of METTL16, one of the 'writers' of RNA N6-methyladenosine modification, may benefit from poly-(ADP-ribose)-polymerase inhibitor (PARPi) treatment. Mechanistically, METTL16 interacts with MRE11 through RNA and this interaction inhibits MRE11's exonuclease activity in a methyltransferase-independent manner, thereby repressing DNA end resection. Upon DNA damage, ATM phosphorylates METTL16 resulting in a conformational change and autoinhibition of its RNA binding. This dissociates the METTL16-RNA-MRE11 complex and releases inhibition of MRE11. Concordantly, PDAC cells with high METTL16 expression show increased sensitivity to PARPi, especially when combined with gemcitabine. Thus, our findings reveal a role for METTL16 in homologous recombination repair and suggest that a combination of PARPi with gemcitabine could be an effective treatment strategy for PDAC with elevated METTL16 expression.


Assuntos
Carcinoma Ductal Pancreático , Proteína Homóloga a MRE11 , Metiltransferases , Neoplasias Pancreáticas , Adenosina Difosfato Ribose , Carcinoma Ductal Pancreático/tratamento farmacológico , DNA , Exonucleases/genética , Humanos , Proteína Homóloga a MRE11/genética , Metiltransferases/genética , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , RNA , Mutações Sintéticas Letais , Neoplasias Pancreáticas
8.
Oncogene ; 41(33): 4018-4027, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35821281

RESUMO

Heme oxygenase-1 (HO-1) is an inducible heme degradation enzyme that plays a cytoprotective role against various oxidative and inflammatory stresses. However, it has also been shown to exert an important role in cancer progression through a variety of mechanisms. Although transcription factors such as Nrf2 are involved in HO-1 regulation, the posttranslational modifications of HO-1 after oxidative insults and the underlying mechanisms remain unexplored. Here, we screened and identified that the deubiquitinase USP7 plays a key role in the control of redox homeostasis through promoting HO-1 deubiquitination and stabilization in hepatocytes. We used low-dose arsenic as a stress model which does not affect the transcriptional level of HO-1, and found that the interaction between USP7 and HO-1 is increased after arsenic exposure, leading to enhanced HO-1 expression and attenuated oxidative damages. Furthermore, HO-1 protein is ubiquitinated at K243 and subjected to degradation under resting conditions; whereas when after arsenic exposure, USP7 itself can be ubiquitinated at K476, thereafter promoting the binding between USP7 and HO-1, finally leading to enhanced HO-1 deubiquitination and protein accumulation. Moreover, depletion of USP7 and HO-1 inhibit liver tumor growth in vivo, and USP7 positively correlates with HO-1 protein level in clinical human hepatocellular carcinoma (HCC) specimens. In summary, our findings reveal a critical role of USP7 as a HO-1 deubiquitinating enzyme in the regulation of oxidative stresses, and suggest that USP7 inhibitor might be a potential therapeutic agent for treating HO-1 overexpressed liver cancers.


Assuntos
Arsênio , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Neoplasias Hepáticas/genética , Estresse Oxidativo , Peptidase 7 Específica de Ubiquitina/genética
9.
J Biol Chem ; 298(2): 101563, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998823

RESUMO

The cytidine deaminase APOBEC3B (A3B) is an endogenous inducer of somatic mutations and causes chromosomal instability by converting cytosine to uracil in single-stranded DNA. Therefore, identification of factors and mechanisms that mediate A3B expression will be helpful for developing therapeutic approaches to decrease DNA mutagenesis. Arsenic (As) is one well-known mutagen and carcinogen, but the mechanisms by which it induces mutations have not been fully elucidated. Herein, we show that A3B is upregulated and required for As-induced DNA damage and mutagenesis. We found that As treatment causes a decrease of N6-methyladenosine (m6A) modification near the stop codon of A3B, consequently increasing the stability of A3B mRNA. We further reveal that the demethylase FTO is responsible for As-reduced m6A modification of A3B, leading to increased A3B expression and DNA mutation rates in a manner dependent on the m6A reader YTHDF2. Our in vivo data also confirm that A3B is a downstream target of FTO in As-exposed lung tissues. In addition, FTO protein is highly expressed and positively correlates with the protein levels of A3B in tumor samples from human non-small cell lung cancer patients. These findings indicate a previously unrecognized role of A3B in As-triggered somatic mutation and might open new avenues to reduce DNA mutagenesis by targeting the FTO/m6A axis.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Arsênio , Carcinoma Pulmonar de Células não Pequenas , Citidina Desaminase , Neoplasias Pulmonares , Antígenos de Histocompatibilidade Menor , RNA Mensageiro , Adenosina/genética , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Arsênio/toxicidade , Carcinoma Pulmonar de Células não Pequenas/induzido quimicamente , Carcinoma Pulmonar de Células não Pequenas/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Desmetilação/efeitos dos fármacos , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mutagênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Nat Commun ; 12(1): 6653, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789768

RESUMO

BRCA1-BARD1 heterodimers act in multiple steps during homologous recombination (HR) to ensure the prompt repair of DNA double strand breaks. Dysfunction of the BRCA1 pathway enhances the therapeutic efficiency of poly-(ADP-ribose) polymerase inhibitors (PARPi) in cancers, but the molecular mechanisms underlying this sensitization to PARPi are not fully understood. Here, we show that cancer cell sensitivity to PARPi is promoted by the ring between ring fingers (RBR) protein RNF19A. We demonstrate that RNF19A suppresses HR by ubiquitinating BARD1, which leads to dissociation of BRCA1-BARD1 complex and exposure of a nuclear export sequence in BARD1 that is otherwise masked by BRCA1, resulting in the export of BARD1 to the cytoplasm. We provide evidence that high RNF19A expression in breast cancer compromises HR and increases sensitivity to PARPi. We propose that RNF19A modulates the cancer cell response to PARPi by negatively regulating the BRCA1-BARD1 complex and inhibiting HR-mediated DNA repair.


Assuntos
Proteína BRCA1/metabolismo , Recombinação Homóloga , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteína BRCA1/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinogênese , Dano ao DNA , Feminino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ligação Proteica , Multimerização Proteica , Domínios RING Finger , Proteínas Supressoras de Tumor/química , Ubiquitina-Proteína Ligases/química
11.
Front Cell Dev Biol ; 9: 743046, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790664

RESUMO

Ferroptosis, a distinct type of regulated cell death, has been reported to be involved in the tumorigenesis of liver hepatocellular carcinoma (LIHC). However, the precise functions and potential mechanisms of ferroptosis in LIHC were still poorly understood. Herein, we investigated the biological roles of ferroptosis-related gene STEAP3 in LIHC. STEAP3 was previously proved to serve a key regulator in ferroptosis via mediating the iron metabolism. Comprehensive bioinformatics from several databases revealed that STEAP3 was significantly downregulated in LIHC tissues and exhibited the favorable prognostic significance in LIHC patients. The downregulated STEAP3 was further confirmed in two LIHC cells Huh7 and MHCC97H using real-time PCR and western blot. And STEAP3 overexpression significantly inhibited the cell proliferation in Huh7 and MHCC97H cells. In addition, clinical data identified the relationship between STEAP3 expression and several clinicopathological parameters of LIHC patients, including histologic grade, alpha fetal protein (AFP) concentration, etc. Receiver operation characteristic (ROC) curve revealed STEAP3 as a potential diagnostic biomarker for LIHC patients. Moreover, the co-expression network of STEAP3 was explored to gain a better insight into its underlying signaling pathways. Finally, aberrant STEAP3 might participate in varieties of immune-associated signatures in LIHC pathogenesis, including immunostimulators, immunoinhibitors, chemokines, and chemokine receptors. Taken together, these findings could enhance our knowledge regarding the inhibitory roles and underlying biological significance of STEAP3 in LIHC tumorigenesis.

12.
Nucleic Acids Res ; 49(19): 11224-11240, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34606619

RESUMO

The human RecQ helicase BLM is involved in the DNA damage response, DNA metabolism, and genetic stability. Loss of function mutations in BLM cause the genetic instability/cancer predisposition syndrome Bloom syndrome. However, the molecular mechanism underlying the regulation of BLM in cancers remains largely elusive. Here, we demonstrate that the deubiquitinating enzyme USP37 interacts with BLM and that USP37 deubiquitinates and stabilizes BLM, thereby sustaining the DNA damage response (DDR). Mechanistically, DNA double-strand breaks (DSB) promotes ATM phosphorylation of USP37 and enhances the binding between USP37 and BLM. Moreover, knockdown of USP37 increases BLM polyubiquitination, accelerates its proteolysis, and impairs its function in DNA damage response. This leads to enhanced DNA damage and sensitizes breast cancer cells to DNA-damaging agents in both cell culture and in vivo mouse models. Collectively, our results establish a novel molecular mechanism for the USP37-BLM axis in regulating DSB repair with an important role in chemotherapy and radiotherapy response in human cancers.


Assuntos
Neoplasias da Mama/genética , Reparo do DNA , Endopeptidases/genética , Regulação Neoplásica da Expressão Gênica , RecQ Helicases/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Endopeptidases/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Camundongos , Fosforilação , Ligação Proteica , Estabilidade Proteica , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RecQ Helicases/metabolismo , Análise de Sobrevida , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nat Cell Biol ; 23(8): 894-904, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34354233

RESUMO

The shieldin complex functions as the downstream effector of 53BP1-RIF1 to promote DNA double-strand break end-joining by restricting end resection. The SHLD2 subunit binds to single-stranded DNA ends and blocks end resection through OB-fold domains. Besides blocking end resection, it is unclear how the shieldin complex processes SHLD2-bound single-stranded DNA and promotes non-homologous end-joining. Here, we identify a downstream effector of the shieldin complex, ASTE1, as a structure-specific DNA endonuclease that specifically cleaves single-stranded DNA and 3' overhang DNA. ASTE1 localizes to DNA damage sites in a shieldin-dependent manner. Loss of ASTE1 impairs non-homologous end-joining, leads to hyper-resection and causes defective immunoglobulin class switch recombination. ASTE1 deficiency also causes resistance to poly(ADP-ribose) polymerase inhibitors in BRCA1-deficient cells owing to restoration of homologous recombination. These findings suggest that ASTE1-mediated 3' single-stranded DNA end cleavage contributes to the control of DSB repair choice by 53BP1, RIF1 and shieldin.


Assuntos
Reparo do DNA por Junção de Extremidades , Desoxirribonuclease I/fisiologia , Proteínas/fisiologia , Animais , Proteínas de Ciclo Celular/fisiologia , DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Feminino , Instabilidade Genômica , Células HEK293 , Humanos , Switching de Imunoglobulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão
15.
Aging (Albany NY) ; 13(12): 16541-16566, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34160364

RESUMO

Fibroblast growth factor receptor 3 (FGFR3) alters frequently across various cancer types and is a common therapeutic target in bladder urothelial carcinoma (BLCA) with FGFR3 variants. Although emerging evidence supports the role of FGFR3 in individual cancer types, no pan-cancer analysis is available. In this work, we used the open comprehensive datasets, covering a total of 10,953 patients with 10,967 samples across 32 TCGA cancer types, to identify the full alteration spectrum of FGFR3. FGFR3 abnormal expression, methylation patterns, alteration frequency, mutation location distribution, functional impact, and prognostic implications differed greatly from cancer to cancer. The overall alteration frequency of FGFR3 was relatively low in all cancers. Targetable mutations were mainly detected in BLCA, and S249C, Y373C, G370C, and R248C were hotspot mutations that could be targeted by an FDA approved erdafitinib. Genetic fusions were mainly observed in glioma, followed by BLCA. FGFR3-TACC3 was the most common fusion type which was proposed as novel therapeutic targets in glioma and was targetable with erdafitinib in BLCA. Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were two lung cancer subtypes, FGFR3 fusion and hotspot mutation like S249C were observed more commonly in LUSC but not in LUAD. DNA methylation was correlated with the expression of FGFR3 and its downstream genes in some tumors. FGFG3 abnormal expression and alterations exhibited clinical correlations with patient prognosis in several tumors. This work exhibited the full alteration spectrum of FGFR3 and indicated several new clues for their application as potential therapeutic targets and prognostic indicators.


Assuntos
Mutação/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Humanos , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Análise de Sobrevida
16.
Cancer Discov ; 11(11): 2726-2737, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34099454

RESUMO

Immune checkpoint blockade (ICB) has revolutionized cancer therapy. However, the response of patients to ICB is difficult to predict. Here, we examined 81 patients with lung cancer under ICB treatment and found that patients with MET amplification were resistant to ICB and had a poor progression-free survival. Tumors with MET amplifications had significantly decreased STING levels and antitumor T-cell infiltration. Furthermore, we performed deep single-cell RNA sequencing on more than 20,000 single immune cells and identified an immunosuppressive signature with increased subsets of XIST- and CD96-positive exhausted natural killer (NK) cells and decreased CD8+ T-cell and NK-cell populations in patients with MET amplification. Mechanistically, we found that oncogenic MET signaling induces phosphorylation of UPF1 and downregulates tumor cell STING expression via modulation of the 3'-UTR length of STING by UPF1. Decreased efficiency of ICB by MET amplification can be overcome by inhibiting MET. SIGNIFICANCE: We suggest that the combination of MET inhibitor together with ICB will overcome ICB resistance induced by MET amplification. Our report reveals much-needed information that will benefit the treatment of patients with primary MET amplification or EGFR-tyrosine kinase inhibitor resistant-related MET amplification.This article is highlighted in the In This Issue feature, p. 2659.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-met , Linfócitos T CD8-Positivos , Amplificação de Genes , Humanos , Imunoterapia , Células Matadoras Naturais , Neoplasias Pulmonares/terapia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
17.
Front Cell Dev Biol ; 9: 633927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150745

RESUMO

The AlkB family consists of Fe(II)- and α-ketoglutarate-dependent dioxygenases that can catalyze demethylation on a variety of substrates, such as RNA and DNA, subsequently affecting tumor progression and prognosis. However, their detailed functional roles in lung adenocarcinoma (LUAD) have not been clarified in a comprehensive manner. In this study, several bioinformatics databases, such as ONCOMINE, TIMER, and DiseaseMeth, were used to evaluate the expression profiles and prognostic significance of the AlkB family (ALKBH1-8 and FTO) in LUAD. The expression levels of ALKBH1/2/4/5/7/8 were significantly increased in LUAD tissues, while the expression levels of ALKBH3/6 and FTO were decreased. The main functions of differentially expressed AlkB homologs are related to the hematopoietic system and cell adhesion molecules. We also found that the expression profiles of the AlkB family are highly correlated with infiltrating immune cells (i.e., B cells, CD8 + T cells, CD4 + T cells, macrophages, neutrophils and dendritic cells). In addition, DNA methylation analysis indicated that the global methylation levels of ALKBH1/2/4/5/6/8 and FTO were decreased, while the global methylation levels of ALKBH3/7 were increased. In addition, the patients with upregulated ALKBH2 have significantly poor overall survival (OS) and post-progressive survival (PPS). Taken together, our work could provide insightful information about aberrant AlkB family members as potential biomarkers for the diagnostic and prognostic evaluation of LUAD. Especially, ALKBH2 could be served as a therapeutic candidate for treating LUAD.

18.
Front Oncol ; 11: 644854, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968743

RESUMO

Background: Fibroblast growth factor receptor 2 (FGFR2) is frequently altered in tumors and one of the top therapeutic targets in cholangiocarcinoma (CHOL) with FGFR2 fusions. Although there have been several studies on individual tumors, a comprehensive analysis of FGFR2 genetic aberrations and their simultaneous clinical implications across different tumors have not been reported. Methods: In this study, we used the large comprehensive datasets available, covering over 10,000 tumor samples across more than 30 cancer types, to analyze FGFR2 abnormal expression, methylation, alteration (mutations/fusions and amplification/deletion), and their clinical associations. Results: Alteration frequency, mutation location distribution, oncogenic effects, and therapeutic implications varied among different cancers. The overall mutation rate of FGFR2 is low in pancancer. CHOL had the highest mutation frequency, and fusion accounted for the major proportion. All these fusion aberrations in CHOL were targetable, and an FDA-approved drug was approved recently. Uterine corpus endometrial carcinoma (UCEC) had the highest number of FGFR2 mutations, and the most frequently mutated positions were S252W and N549K, where the functional impact was oncogenic, but targeted therapy was less effective. Additionally, DNA methylation was associated with FGFR2 expression in several cancers. Moreover, FGFG2 expression and genetic aberrations showed clinical associations with patient survival in several cancers, indicating their potential for application as new tumor markers and therapeutic targets. Conclusions: This study showed the full FGFR2 alteration spectrum and provided a broad molecular perspective of FGFR2 in a comprehensive manner, suggesting some new directions for clinical targeted therapy of cancers.

19.
Nat Commun ; 12(1): 2187, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846346

RESUMO

The RNA-sensing pathway contributes to type I interferon (IFN) production induced by DNA damaging agents. However, the potential involvement of RNA sensors in DNA repair is unknown. Here, we found that retinoic acid-inducible gene I (RIG-I), a key cytosolic RNA sensor that recognizes RNA virus and initiates the MAVS-IRF3-type I IFN signaling cascade, is recruited to double-stranded breaks (DSBs) and suppresses non-homologous end joining (NHEJ). Mechanistically, RIG-I interacts with XRCC4, and the RIG-I/XRCC4 interaction impedes the formation of XRCC4/LIG4/XLF complex at DSBs. High expression of RIG-I compromises DNA repair and sensitizes cancer cells to irradiation treatment. In contrast, depletion of RIG-I renders cells resistant to irradiation in vitro and in vivo. In addition, this mechanism suggests a protective role of RIG-I in hindering retrovirus integration into the host genome by suppressing the NHEJ pathway. Reciprocally, XRCC4, while suppressed for its DNA repair function, has a critical role in RIG-I immune signaling through RIG-I interaction. XRCC4 promotes RIG-I signaling by enhancing oligomerization and ubiquitination of RIG-I, thereby suppressing RNA virus replication in host cells. In vivo, silencing XRCC4 in mouse lung promotes influenza virus replication in mice and these mice display faster body weight loss, poorer survival, and a greater degree of lung injury caused by influenza virus infection. This reciprocal regulation of RIG-I and XRCC4 reveals a new function of RIG-I in suppressing DNA repair and virus integration into the host genome, and meanwhile endues XRCC4 with a crucial role in potentiating innate immune response, thereby helping host to prevail in the battle against virus.


Assuntos
Proteína DEAD-box 58/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais/imunologia , Células A549 , Animais , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Genoma Humano , Células HEK293 , Humanos , Camundongos , Radiação Ionizante , Retroviridae/metabolismo , Replicação Viral/efeitos da radiação
20.
Nucleic Acids Res ; 49(6): 3322-3337, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33704464

RESUMO

RPA is a critical factor for DNA replication and replication stress response. Surprisingly, we found that chromatin RPA stability is tightly regulated. We report that the GDP/GTP exchange factor DOCK7 acts as a critical replication stress regulator to promote RPA stability on chromatin. DOCK7 is phosphorylated by ATR and then recruited by MDC1 to the chromatin and replication fork during replication stress. DOCK7-mediated Rac1/Cdc42 activation leads to the activation of PAK1, which subsequently phosphorylates RPA1 at S135 and T180 to stabilize chromatin-loaded RPA1 and ensure proper replication stress response. Moreover, DOCK7 is overexpressed in ovarian cancer and depleting DOCK7 sensitizes cancer cells to camptothecin. Taken together, our results highlight a novel role for DOCK7 in regulation of the replication stress response and highlight potential therapeutic targets to overcome chemoresistance in cancer.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Proteínas Ativadoras de GTPase/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteína de Replicação A/metabolismo , Animais , Linhagem Celular Tumoral , Reparo do DNA , Feminino , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fosforilação , Proteólise , Transdução de Sinais , Estresse Fisiológico/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA