Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 37(2): e22758, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36607288

RESUMO

Stress in the endoplasmic reticulum (ER) may perturb proteostasis and activates the unfolded protein response (UPR). UPR activation is frequently observed in cancer cells and is believed to fuel cancer progression. Here, we report that one of the three UPR sensors, ATF6α, was associated with prostate cancer (PCa) development, while both genetic and pharmacological inhibition of ATF6α impaired the survival of castration-resistance PCa (CRPC) cells. Transcriptomic analyses identified the molecular pathways deregulated upon ATF6α depletion, and also discovered considerable disparity in global gene expression between ATF6α knockdown and Ceapin-A7 treatment. In addition, combined analyses of human CRPC bulk RNA-seq and single-cell RNA-seq (scRNA-seq) public datasets confirmed that CRPC tumors with higher ATF6α activity displayed higher androgen receptor (AR) activity, proliferative and neuroendocrine (NE) like phenotypes, as well as immunosuppressive features. Lastly, we identified a 14-gene set as ATF6α NE gene signature with encouraging prognostic power. In conclusion, our results indicate that ATF6α is correlated with PCa progression and is functionally relevant to CRPC cell survival. Both specificity and efficacy of ATF6α inhibitors require further refinement and evaluation.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Linhagem Celular Tumoral , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
2.
Plant Physiol ; 177(2): 684-697, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29686056

RESUMO

Chloroplast biogenesis and development are highly complex processes requiring interaction between plastid and nuclear genomic products. Using a high-throughput screen for chloroplast biogenesis suppressors in Arabidopsis (Arabidopsis thaliana), we identified a suppressor of thf1 (sot5) that displays virescent and serrated leaves. Further characterization revealed that sot5 mutants are defective in leaf adaxial and abaxial polarity and act as enhancers of asymmetric leaves2 Map-based cloning identified SOT5 as a gene previously named EMB2279 that encodes a plastid-targeted pentatricopeptide repeat (PPR) protein with 11 PPR motifs. A G-to-A mutation in sot5 leads to a significant decrease in splicing efficiency, generating two additional mRNA variants. As reported previously, the sot5 null mutation is embryo lethal. SOT5 is predicted to bind to specific RNA sequences found in plastid rpl2 and trnK genes, and we found decreased splicing efficiency of the rpl2 and trnK genes in sot5 mutants. Together, our results reveal that the PPR protein SOT5/EMB2279 is required for intron splicing of plastid rpl2 and trnK, providing insights into the role of plastid translation in the coupled development between chloroplasts and leaves.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Cloroplastos/genética , Íntrons , Plastídeos/genética , Proteases Dependentes de ATP/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proliferação de Células/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Mutação , Células Vegetais/patologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
3.
Oncotarget ; 7(23): 35390-403, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27191987

RESUMO

Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering.


Assuntos
Adipócitos/efeitos dos fármacos , Ginsenosídeos/farmacologia , Fibrina Rica em Plaquetas , Células-Tronco/efeitos dos fármacos , Engenharia Tecidual/métodos , Adipócitos/citologia , Tecido Adiposo/citologia , Animais , Mama , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Xenoenxertos , Humanos , Camundongos Nus , Regeneração/efeitos dos fármacos , Células-Tronco/citologia , Cicatrização/efeitos dos fármacos
4.
Plant J ; 76(6): 943-56, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24124904

RESUMO

Chloroplast development in plants is regulated by a series of coordinated biological processes. In this work, a genetic suppressor screen for the leaf variegation phenotype of the thylakoid formation 1 (thf1) mutant combined with a proteomic assay was employed to elucidate this complicated network. We identified a mutation in ClpR4, named clpR4-3, which leads to leaf virescence and also rescues the var2 variegation. Proteomic analysis showed that the chloroplast proteome of clpR4-3 thf1 is dominantly controlled by clpR4-3, providing molecular mechanisms that cause genetic epistasis of clpR4-3 to thf1. Classification of the proteins significantly mis-regulated in the mutants revealed that those functioning in the expression of plastid genes are oppositely regulated while proteins functioning in antioxidative stress, protein folding, and starch metabolism are changed in the same direction between thf1 and clpR4-3. The levels of FtsHs including FtsH2/VAR2, FtsH8, and FtsH5/VAR1 are greatly reduced in thf1 compared with those in the wild type, but are higher in clpR4-3 thf1 than in thf1. Quantitative PCR analysis revealed that FtsH expression in clpR4-3 thf1 is regulated post-transcriptionally. In addition, a number of ribosomal proteins are less expressed in the clpR4-3 proteome, which is in line with the reduced levels of rRNAs in clpR4-3. Furthermore, knocking out PRPL11, one of the most downregulated proteins in the clpR4-3 thf1 proteome, rescues the leaf variegation phenotype of the thf1 and var2 mutants. These results provide insights into molecular mechanisms by which the virescent clpR4-3 mutation suppresses leaf variegation of thf1 and var2.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Proteômica , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Regulação para Baixo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Modelos Biológicos , Mutação , Estresse Oxidativo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Dobramento de Proteína , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/ultraestrutura , Análise de Sequência de DNA , Amido/metabolismo , Tilacoides/metabolismo
5.
Mol Plant ; 6(6): 1933-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23793400

RESUMO

The secretory pathway is responsible for the transport of newly synthesized transmembrane proteins from the endoplasmic reticulum to their destinations via the Golgi/trans-Golgi network (TGN). Cargo proteins at each station are actively sorted by specific sorting signals on the cargo and the corresponding coat complexes. Here, we used the Arabidopsis regulator of G-protein signaling (AtRGS1), which contains an N-terminal potentially sensing glucose seven-transmembrane domain and a C-terminal RGS domain, as a model to uncover sorting motifs required for its cell surface expression. Expression of wild-type and truncated or mutated AtRGS1 fluorescent fusion proteins identified two cysteine residues in the extracellular N-terminus that are essential for endoplasmic reticulum exit and/or correct folding of AtRGS1. The linker between the seven-transmembrane and RGS domains contains an endoplasmic reticulum export signal, whereas the C-terminus is dispensable for the plasma membrane expression of AtRGS1. Interestingly, deletion of the RGS domain results in Golgi/TGN localization of the truncated AtRGS1. Further analysis using site-directed mutagenesis showed that a tyrosine-based motif embedded in the RGS domain is essential for Golgi/TGN export of AtRGS1. These results reveal a new role for the RGS domain in regulating AtRGS1 trafficking from the Golgi/TGN to the plasma membrane and explain the interaction between the seven-transmembrane and RGS domains.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas RGS/fisiologia , Via Secretória , Rede trans-Golgi/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Sinais de Exportação Nuclear , Proteínas RGS/química , Proteínas RGS/metabolismo
6.
Elife ; 2: e00269, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23543845

RESUMO

The transition from the juvenile to adult phase in plants is controlled by diverse exogenous and endogenous cues such as age, day length, light, nutrients, and temperature. Previous studies have shown that the gradual decline in microRNA156 (miR156) with age promotes the expression of adult traits. However, how age temporally regulates the abundance of miR156 is poorly understood. We show here that the expression of miR156 responds to sugar. Sugar represses miR156 expression at both the transcriptional level and post-transcriptional level through the degradation of miR156 primary transcripts. Defoliation and photosynthetic mutant assays further demonstrate that sugar from the pre-existing leaves acts as a mobile signal to repress miR156, and subsequently triggers the juvenile-to-adult phase transition in young leaf primordia. We propose that the gradual increase in sugar after seed germination serves as an endogenous cue for developmental timing in plants. DOI:http://dx.doi.org/10.7554/eLife.00269.001.


Assuntos
Arabidopsis/metabolismo , MicroRNAs/metabolismo , Folhas de Planta/metabolismo , RNA de Plantas/metabolismo , Plântula/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Bryopsida/metabolismo , Metabolismo dos Carboidratos , Sinais (Psicologia) , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , MicroRNAs/genética , Mutação , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA de Plantas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Tempo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Transcrição Gênica
7.
Mol Biosyst ; 7(5): 1399-408, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21350782

RESUMO

Extensive front-end separation is usually required for complex samples in bottom-up proteomics to alleviate the problem of peptide undersampling. Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-based experiments have particularly higher demands, in terms of the number of duty cycles and the sensitivity, to confidently quantify protein abundance. Strong cation exchange (SCX)/reverse phase (RP) liquid chromatography (LC) is currently used routinely to separate iTRAQ-labeled peptides because of its ability to simultaneously clean up the iTRAQ reagents and byproducts and provide first-dimension separation; nevertheless, the low resolution of SCX means that peptides can be redundantly sampled across fractions, leading to loss of usable duty cycles. In this study, we explored the combinatorial application of offline SCX fractionation with online RP-RP applied to iTRAQ-labeled chloroplast proteins to evaluate the effect of three-dimensional LC separation on the overall performance of the quantitative proteomics experiment. We found that the higher resolution of RP-RP can be harnessed to complement SCX-RP and increase the quality of protein identification and quantification, without significantly impacting instrument time and reproducibility.


Assuntos
Cromatografia por Troca Iônica/métodos , Cromatografia Líquida/métodos , Proteoma/análise , Proteômica/métodos , Sequência de Aminoácidos , Proteínas de Arabidopsis/análise , Cátions , Cloroplastos/metabolismo , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Peptídeos/análise , Reprodutibilidade dos Testes
8.
Plant J ; 58(6): 1041-53, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19228339

RESUMO

Heterotrimeric G protein knock-out mutants have no phenotypic defect in chloroplast development, and the connection between the G protein signaling pathway and chloroplast development has only been inferred from pharmaceutical evidence. Thus, whether G protein signaling plays a role in chloroplast development remains an open question. Here, we present genetic evidence, using the leaf-variegated mutant thylakoid formation 1 (thf1), indicating that inactivation or activation of the endogenous G protein alpha-subunit (GPA1) affects chloroplast development, as does the ectopic expression of the constitutively active Galpha-subunit (cGPA1). Molecular biological and genetic analyses showed that FtsH complexes, which are composed of type-A (FtsH1/FtsH5) and type-B (FtsH2/FtsH8) subunits, are required for cGPA1-promoted chloroplast development in thf1. Furthermore, the ectopic expression of cGPA1 rescues the leaf variegation of ftsh2. Consistent with this finding, microarray analysis shows that ectopic expression of cGPA1 partially corrects mis-regulated gene expression in thf1. This overlooked function of G proteins provides new insight into our understanding of the integrative signaling network, which dynamically regulates chloroplast development and function in response to both intracellular and extracellular signals.


Assuntos
Proteases Dependentes de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Proteases Dependentes de ATP/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/ultraestrutura , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA