Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 222: 456-466, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950659

RESUMO

Hepatocellular carcinoma (HCC), the primary form of liver cancer, is the third leading cause of cancer-related death globally. Hernandonine is a natural alkaloid derived from Hernandia nymphaeifolia that has been shown to exert various biological functions. In a previous study, hernandonine was shown to suppress the proliferation of several solid tumor cell lines without affecting normal human cell lines. However, little is known about the effect of hernandonine on HCC. Therefore, this study aimed to investigate the effect and mechanism of hernandonine on HCC in relation to autophagy. We found that hernandonine inhibited HCC cell growth in vitro and in vivo. In addition, hernandonine elicited autophagic cell death and DNA damage in HCC cells. RNA-seq analysis revealed that hernandonine upregulated p53 and Hippo signaling pathway-related genes in HCC cells. Small RNA interference of p53 resulted in hernandonine-induced autophagic cell death attenuation. However, inhibition of YAP sensitized HCC cells to hernandonine by increasing the autophagy induction. This is the first study to illustrate the complex involvement of p53 and YAP in the hernandonine-induced autophagic cell death in human HCC cells. Our findings provide novel evidence for the potential of hernandonine as a therapeutic agent for HCC treatment.

2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999958

RESUMO

Anticancer peptides (ACPs) are bioactive compounds known for their selective cytotoxicity against tumor cells via various mechanisms. Recent studies have demonstrated that in silico machine learning methods are effective in predicting peptides with anticancer activity. In this study, we collected and analyzed over a thousand experimentally verified ACPs, specifically targeting peptides derived from natural sources. We developed a precise prediction model based on their sequence and structural features, and the model's evaluation results suggest its strong predictive ability for anticancer activity. To enhance reliability, we integrated the results of this model with those from other available methods. In total, we identified 176 potential ACPs, some of which were synthesized and further evaluated using the MTT colorimetric assay. All of these putative ACPs exhibited significant anticancer effects and selective cytotoxicity against specific tumor cells. In summary, we present a strategy for identifying and characterizing natural peptides with selective cytotoxicity against cancer cells, which could serve as novel therapeutic agents. Our prediction model can effectively screen new molecules for potential anticancer activity, and the results from in vitro experiments provide compelling evidence of the candidates' anticancer effects and selective cytotoxicity.


Assuntos
Antineoplásicos , Simulação por Computador , Peptídeos , Humanos , Peptídeos/farmacologia , Peptídeos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Sobrevivência Celular/efeitos dos fármacos , Aprendizado de Máquina , Ensaios de Seleção de Medicamentos Antitumorais
3.
Proteomics ; 24(9): e2300257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38263811

RESUMO

With the notable surge in therapeutic peptide development, various peptides have emerged as potential agents against virus-induced diseases. Viral entry inhibitory peptides (VEIPs), a subset of antiviral peptides (AVPs), offer a promising avenue as entry inhibitors (EIs) with distinct advantages over chemical counterparts. Despite this, a comprehensive analytical platform for characterizing these peptides and their effectiveness in blocking viral entry remains lacking. In this study, we introduce a groundbreaking in silico approach that leverages bioinformatics analysis and machine learning to characterize and identify novel VEIPs. Cross-validation results demonstrate the efficacy of a model combining sequence-based features in predicting VEIPs with high accuracy, validated through independent testing. Additionally, an EI type model has been developed to distinguish peptides specifically acting as Eis from AVPs with alternative activities. Notably, we present iDVEIP, a web-based tool accessible at http://mer.hc.mmh.org.tw/iDVEIP/, designed for automatic analysis and prediction of VEIPs. Emphasizing its capabilities, the tool facilitates comprehensive analyses of peptide characteristics, providing detailed amino acid composition data for each prediction. Furthermore, we showcase the tool's utility in identifying EIs against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Assuntos
Antivirais , Biologia Computacional , Aprendizado de Máquina , Peptídeos , SARS-CoV-2 , Internalização do Vírus , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Humanos , Peptídeos/química , Peptídeos/farmacologia , Biologia Computacional/métodos , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Simulação por Computador , COVID-19/virologia , Software
4.
J Exp Clin Cancer Res ; 42(1): 29, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691089

RESUMO

BACKGROUND: The applicability and therapeutic efficacy of specific personalized immunotherapy for cancer patients is limited by the genetic diversity of the host or the tumor. Side-effects such as immune-related adverse events (IRAEs) derived from the administration of immunotherapy have also been observed. Therefore, regulatory immunotherapy is required for cancer patients and should be developed. METHODS: The cationic lipo-PEG-PEI complex (LPPC) can stably and irreplaceably adsorb various proteins on its surface without covalent linkage, and the bound proteins maintain their original functions. In this study, LPPC was developed as an immunoregulatory platform for personalized immunotherapy for tumors to address the barriers related to the heterogenetic characteristics of MHC molecules or tumor associated antigens (TAAs) in the patient population. Here, the immune-suppressive and highly metastatic melanoma, B16F10 cells were used to examine the effects of this platform. Adsorption of anti-CD3 antibodies, HLA-A2/peptide, or dendritic cells' membrane proteins (MP) could flexibly provide pan-T-cell responses, specific Th1 responses, or specific Th1 and Th2 responses, depending on the host needs. Furthermore, with regulatory antibodies, the immuno-LPPC complex properly mediated immune responses by adsorbing positive or negative antibodies, such as anti-CD28 or anti-CTLA4 antibodies. RESULTS: The results clearly showed that treatment with LPPC/MP/CD28 complexes activated specific Th1 and Th2 responses, including cytokine release, CTL and prevented T-cell apoptosis. Moreover, LPPC/MP/CD28 complexes could eliminate metastatic B16F10 melanoma cells in the lung more efficiently than LPPC/MP. Interestingly, the melanoma resistance of mice treated with LPPC/MP/CD28 complexes would be reversed to susceptible after administration with LPPC/MP/CTLA4 complexes. NGS data revealed that LPPC/MP/CD28 complexes could enhance the gene expression of cytokine and chemokine pathways to strengthen immune activation than LPPC/MP, and that LPPC/MP/CTLA4 could abolish the LPPC/MP complex-mediated gene expression back to un-treatment. CONCLUSIONS: Overall, we proved a convenient and flexible immunotherapy platform for developing personalized cancer therapy.


Assuntos
Melanoma , Polímeros , Animais , Camundongos , Citocinas/metabolismo , Imunoterapia , Lipossomos/química
5.
Nanomedicine ; 47: 102628, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400317

RESUMO

Benefit for clinical melanoma treatments, the transdermal neoadjuvant therapy could reduce surgery region and increase immunotherapy efficacy. Using lipoplex (Lipo-PEG-PEI-complex, LPPC) encapsulated doxorubicin (DOX) and carrying CpG oligodeoxynucleotide; the transdermally administered nano-liposomal drug complex (LPPC-DOX-CpG) would have high cytotoxicity and immunostimulatory activity to suppress systemic metastasis of melanoma. LPPC-DOX-CpG dramatically suppressed subcutaneous melanoma growth by inducing tumor cell apoptosis and recruiting immune cells into the tumor area. Animal studies further showed that the colonization and growth of spontaneously metastatic melanoma cells in the liver and lung were suppressed by transdermal LPPC-DOX-CpG. Furthermore, NGS analysis revealed IFN-γ and NF-κB pathways were triggered to recruit and activate the antigen-presenting-cells and effecter cells, which could activate the anti-tumor responses as the major mechanism responsible for the therapeutic effect of LPPC-DOX-CpG. Finally, we have successfully proved transdermal LPPC-DOX-CpG as a promising penetrative carrier to activate systemic anti-tumor immunity against subcutaneous and metastatic tumor.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico
6.
Int J Med Sci ; 19(14): 2008-2021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483599

RESUMO

Endometrial cancer is one of the most common malignancy affecting women in developed countries. Resection uterus or lesion area is usually the first option for a simple and efficient therapy. Therefore, it is necessary to find a new therapeutic drug to reduce surgery areas to preserve fertility. Anticancer peptides (ACP) are bioactive amino acids with lower toxicity and higher specificity than chemical drugs. This study is to address an ACP, herein named Q7, which could downregulate 24-Dehydrocholesterol Reductase (DHCR24) to disrupt lipid rafts formation, and sequentially affect the AKT signal pathway of HEC-1-A cells to suppress their tumorigenicity such as proliferation and migration. Moreover, lipo-PEI-PEG-complex (LPPC) was used to enhance Q7 anticancer activity in vitro and efficiently show its effects on HEC-1-A cells. Furthermore, LPPC-Q7 exhibited a synergistic effect in combination with doxorubicin or paclitaxel. To summarize, Q7 was firstly proved to exhibit an anticancer effect on endometrial cancer cells and combined with LPPC efficiently improved the cytotoxicity of Q7.


Assuntos
Neoplasias do Endométrio , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Feminino , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Proteínas do Tecido Nervoso
7.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36215051

RESUMO

Antiretroviral peptides are a kind of bioactive peptides that present inhibitory activity against retroviruses through various mechanisms. Among them, viral integrase inhibitory peptides (VINIPs) are a class of antiretroviral peptides that have the ability to block the action of integrase proteins, which is essential for retroviral replication. As the number of experimentally verified bioactive peptides has increased significantly, the lack of in silico machine learning approaches can effectively predict the peptides with the integrase inhibitory activity. Here, we have developed the first prediction model for identifying the novel VINIPs using the sequence characteristics, and the hybrid feature set was considered to improve the predictive ability. The performance was evaluated by 5-fold cross-validation based on the training dataset, and the result indicates the proposed model is capable of predicting the VINIPs, with a sensitivity of 85.82%, a specificity of 88.81%, an accuracy of 88.37%, a balanced accuracy of 87.32% and a Matthews correlation coefficient value of 0.64. Most importantly, the model also consistently provides effective performance in independent testing. To sum up, we propose the first computational approach for identifying and characterizing the VINIPs, which can be considered novel antiretroviral therapy agents. Ultimately, to facilitate further research and development, iDVIP, an automatic computational tool that predicts the VINIPs has been developed, which is now freely available at http://mer.hc.mmh.org.tw/iDVIP/.


Assuntos
Infecções por HIV , Integrases , Humanos , Sequência de Aminoácidos , Peptídeos/farmacologia , Peptídeos/química , Proteínas/química
8.
Cell Rep ; 37(5): 109955, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731634

RESUMO

Macrophages undergoing M1- versus M2-type polarization differ significantly in their cell metabolism and cellular functions. Here, global quantitative time-course proteomics and phosphoproteomics paired with transcriptomics provide a comprehensive characterization of temporal changes in cell metabolism, cellular functions, and signaling pathways that occur during the induction phase of M1- versus M2-type polarization. Significant differences in, especially, metabolic pathways are observed, including changes in glucose metabolism, glycosaminoglycan metabolism, and retinoic acid signaling. Kinase-enrichment analysis shows activation patterns of specific kinases that are distinct in M1- versus M2-type polarization. M2-type polarization inhibitor drug screens identify drugs that selectively block M2- but not M1-type polarization, including mitogen-activated protein kinase kinase (MEK) and histone deacetylase (HDAC) inhibitors. These datasets provide a comprehensive resource to identify specific signaling and metabolic pathways that are critical for macrophage polarization. In a proof-of-principle approach, we use these datasets to show that MEK signaling is required for M2-type polarization by promoting peroxisome proliferator-activated receptor-γ (PPARγ)-induced retinoic acid signaling.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteoma , Proteômica , Animais , Metabolismo Energético , Humanos , Interleucina-4/farmacologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Fenótipo , Fosforilação , Estudo de Prova de Conceito , Transdução de Sinais , Células THP-1 , Fatores de Tempo , Tretinoína/farmacologia
9.
Sci Rep ; 11(1): 13594, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193950

RESUMO

Anticancer peptides (ACPs) are a kind of bioactive peptides which could be used as a novel type of anticancer drug that has several advantages over chemistry-based drug, including high specificity, strong tumor penetration capacity, and low toxicity to normal cells. As the number of experimentally verified bioactive peptides has increased significantly, various of in silico approaches are imperative for investigating the characteristics of ACPs. However, the lack of methods for investigating the differences in physicochemical properties of ACPs. In this study, we compared the N- and C-terminal amino acid composition for each peptide, there are three major subtypes of ACPs that are defined based on the distribution of positively charged residues. For the first time, we were motivated to develop a two-step machine learning model for identification of the subtypes of ACPs, which classify the input data into the corresponding group before applying the classifier. Further, to improve the predictive power, the hybrid feature sets were considered for prediction. Evaluation by five-fold cross-validation showed that the two-step model trained with sequence-based features and physicochemical properties was most effective in discriminating between ACPs and non-ACPs. The two-step model trained with the hybrid features performed well, with a sensitivity of 86.75%, a specificity of 85.75%, an accuracy of 86.08%, and a Matthews Correlation Coefficient value of 0.703. Furthermore, the model also consistently provides the effective performance in independent testing set, with sensitivity of 77.6%, specificity of 94.74%, accuracy of 88.99% and the MCC value reached 0.75. Finally, the two-step model has been implemented as a web-based tool, namely iDACP, which is now freely available at http://mer.hc.mmh.org.tw/iDACP/ .


Assuntos
Sequência de Aminoácidos , Antineoplásicos/química , Biologia Computacional , Aprendizado de Máquina , Peptídeos , Humanos , Peptídeos/química , Peptídeos/genética
10.
Comput Biol Chem ; 87: 107277, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32512487

RESUMO

Lung cancer is the most occurring cancer type, and its mortality rate is also the highest, among them lung adenocarcinoma (LUAD) accounts for about 40 % of lung cancer. There is an urgent need to develop a prognosis prediction model for lung adenocarcinoma. Previous LUAD prognosis studies only took single-omics data, such as mRNA or miRNA, into consideration. To this end, we proposed a deep learning-based autoencoding approach for combination of four-omics data, mRNA, miRNA, DNA methylation and copy number variations, to construct an autoencoder model, which learned representative features to differentiate the two optimal patient subgroups with a significant difference in survival (P = 4.08e-09) and good consistency index (C-index = 0.65). The multi-omics model was validated though four independent datasets, i.e. GSE81089 for mRNA (n = 198, P = 0.0083), GSE63805 for miRNA (n = 32, P = 0.018), GSE63384 for DNA methylation (n = 35, P = 0.009), and TCGA independent samples for copy number variations (n = 94, P = 0.0052). Finally, a functional analysis was performed on two survival subgroups to discover genes involved in biological processes and pathways. This is the first study incorporating deep autoencoding and four-omics data to construct a robust survival prediction model, and results show the approach is useful at predicting LUAD prognostication.

11.
Cancer Sci ; 110(6): 1974-1986, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31012976

RESUMO

We previously found that circulating ß2 -glycoprotein I inhibits human endothelial cell migration, proliferation, and angiogenesis by diverse mechanisms. In the present study, we investigated the antitumor activities of ß2 -glycoprotein I using structure-function analysis and mapped the critical region within the ß2 -glycoprotein I peptide sequence that mediates anticancer effects. We constructed recombinant cDNA and purified different ß2 -glycoprotein I polypeptide domains using a baculovirus expression system. We found that purified ß2 -glycoprotein I, as well as recombinant ß2 -glycoprotein I full-length (D12345), polypeptide domains I-IV (D1234), and polypeptide domain I (D1) significantly inhibited melanoma cell migration, proliferation and invasion. Western blot analyses were used to determine the dysregulated expression of proteins essential for intracellular signaling pathways in B16-F10 treated with ß2 -glycoprotein I and variant recombinant polypeptides. Using a melanoma mouse model, we found that D1 polypeptide showed stronger potency in suppressing tumor growth. Structural analysis showed that fragments A and B within domain I would be the critical regions responsible for antitumor activity. Annexin A2 was identified as the counterpart molecule for ß2 -glycoprotein I by immunofluorescence and coimmunoprecipitation assays. Interaction between specific amino acids of ß2 -glycoprotein I D1 and annexin A2 was later evaluated by the molecular docking approach. Moreover, five amino acid residues were selected from fragments A and B for functional evaluation using site-directed mutagenesis, and P11A, M42A, and I55P mutations were shown to disrupt the anti-melanoma cell migration ability of ß2 -glycoprotein I. This is the first study to show the therapeutic potential of ß2 -glycoprotein I D1 in the treatment of melanoma progression.


Assuntos
Movimento Celular/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Peptídeos/farmacologia , beta 2-Glicoproteína I/química , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/metabolismo , Domínios Proteicos , Homologia de Sequência de Aminoácidos , beta 2-Glicoproteína I/genética , beta 2-Glicoproteína I/metabolismo
12.
Microrna ; 7(2): 85-91, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29595120

RESUMO

BACKGROUND: High-risk HPV subtypes are driving forces for human cancer development: HPV-16 and HPV-18 are responsible for most HPV-caused cancers. OBJECTIVE: This review describes the present knowledge on HR-HPV genomes coding potential for viral miRNAs. METHODS: HPV subtypes miRNA database, VIRmiRtar, has been constructed applying bioinformatics and a computational method, ViralMir, exploiting structural features, the presence of hairpins, and validation by comparison with RNA sequencing datasets. RESULTS: Several miRNA candidates have been localised in the genomes of high-risk HPV subtypes. Among these, HPV-16 miR-1, miR-2 and miR-3. The database contains a list of host candidate gene targets that may be responsible for the oncogenesis in the various cellular environments. CONCLUSION: miRNA silencing therapies, based on specific cellular uptake of miRNA mimics and antagomiRs, directed towards HPV encoded miRNAs and/or microRNAs deregulated in the host cells, could be a valuable approach to support pharmaceutical interventions in the treatment of HPV dependent cancers.


Assuntos
MicroRNAs/genética , Neoplasias/genética , Neoplasias/virologia , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Carcinogênese , Genoma Viral , Humanos , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia
13.
Brief Bioinform ; 19(6): 1102-1114, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28531277

RESUMO

In mammals, microRNAs (miRNAs) play key roles in controlling posttranscriptional regulation through binding to the mRNAs of target genes. Recently, it was discovered that viral miRNAs may be involved in human cancers and diseases. It is likely that viral miRNAs help viruses enter the latent phase of their life cycle and become undetected by the host's immune system, while increasing the host's risk for cancer development. Cervical cancer is typically related to the infection of human papillomavirus (HPV) through sexual transmission. To further understand the molecular mechanisms underlying the associations of HPV infection with genital diseases, we developed a systematic method for viral miRNA identification and viral miRNA-mediated regulatory network construction based on genome-wide sequence analysis. The complete genomes of certain high-risk HPV subtypes were used to predict putative viral pre-miRNAs by bioinformatics approaches. In addition, small RNA libraries in human cervical lesions from existing publications were collected to validate the predicted HPV pre-miRNAs. For the construction of virally encoded miRNA-mediated regulatory network of HPV infection, cervical squamous epithelial carcinoma gene expression data were extracted from the RNA sequencing platform in The Cancer Genome Atlas; the differentially expressed genes were used to identify the putative targets of viral miRNAs. Predicted cellular target genes of HPV-encoded miRNAs provide an overview of these viral miRNA's putative functions. Finally, a large-scale genome analysis was carried out to examine the phylogenetic relationship and structural evolution among genital HPV types that have the potential to cause genital cancer. In this study, we discovered putative HPV-encoded miRNAs, which were validated against the small RNA libraries in human cervical lesions. Furthermore, as indicated by their biological functions, host genes targeted by HPV-encoded miRNAs may play significant roles in virus infection and carcinogenesis. These viral miRNAs pose as promising candidates for the development of antiviral drugs. More importantly, the identified subtype-specific miRNAs have the potential to be used as biomarkers for HPV subtype determination.


Assuntos
Evolução Molecular , Genoma Viral , MicroRNAs/genética , Papillomaviridae/genética , Filogenia , RNA Viral/genética , Carcinogênese , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Humanos , Papillomaviridae/classificação , Reprodutibilidade dos Testes
14.
Artigo em Inglês | MEDLINE | ID: mdl-27114492

RESUMO

Protein ubiquitylation catalyzed by E3 ubiquitin ligases are crucial in the regulation of many cellular processes. Owing to the high throughput of mass spectrometry-based proteomics, a number of methods have been developed for the experimental determination of ubiquitylation sites, leading to a large collection of ubiquitylation data. However, there exist no resources for the exploration of E3-ligase-associated regulatory networks of for ubiquitylated proteins in humans. Therefore, the UbiNet database was developed to provide a full investigation of protein ubiquitylation networks by incorporating experimentally verified E3 ligases, ubiquitylated substrates and protein-protein interactions (PPIs). To date, UbiNet has accumulated 43 948 experimentally verified ubiquitylation sites from 14 692 ubiquitylated proteins of humans. Additionally, we have manually curated 499 E3 ligases as well as two E1 activating and 46 E2 conjugating enzymes. To delineate the regulatory networks among E3 ligases and ubiquitylated proteins, a total of 430 530 PPIs were integrated into UbiNet for the exploration of ubiquitylation networks with an interactive network viewer. A case study demonstrated that UbiNet was able to decipher a scheme for the ubiquitylation of tumor proteins p63 and p73 that is consistent with their functions. Although the essential role of Mdm2 in p53 regulation is well studied, UbiNet revealed that Mdm2 and additional E3 ligases might be implicated in the regulation of other tumor proteins by protein ubiquitylation. Moreover, UbiNet could identify potential substrates for a specific E3 ligase based on PPIs and substrate motifs. With limited knowledge about the mechanisms through which ubiquitylated proteins are regulated by E3 ligases, UbiNet offers users an effective means for conducting preliminary analyses of protein ubiquitylation. The UbiNet database is now freely accessible via http://csb.cse.yzu.edu.tw/UbiNet/ The content is regularly updated with the literature and newly released data.Database URL: http://csb.cse.yzu.edu.tw/UbiNet/.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Humanos , Internet , Interface Usuário-Computador
15.
BMC Syst Biol ; 10 Suppl 1: 3, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26818115

RESUMO

BACKGROUND: Protein ubiquitination catalyzed by E3 ubiquitin ligases play important modulatory roles in various biological processes. With the emergence of high-throughput mass spectrometry technology, the proteomics research community embraced the development of numerous experimental methods for the determination of ubiquitination sites. The result is an accumulation of ubiquitinome data, coupled with a lack of available resources for investigating the regulatory networks among E3 ligases and ubiquitinated proteins. In this study, by integrating existing ubiquitinome data, experimentally validated E3 ligases and established protein-protein interactions, we have devised a strategy to construct a comprehensive map of protein ubiquitination networks. RESULTS: In total, 41,392 experimentally verified ubiquitination sites from 12,786 ubiquitinated proteins of humans have been obtained for this study. Additional 494 E3 ligases along with 1220 functional annotations and 28588 protein domains were manually curated. To characterize the regulatory networks among E3 ligases and ubiquitinated proteins, a well-established network viewer was utilized for the exploration of ubiquitination networks from 40892 protein-protein interactions. The effectiveness of the proposed approach was demonstrated in a case study examining E3 ligases involved in the ubiquitination of tumor suppressor p53. In addition to Mdm2, a known regulator of p53, the investigation also revealed other potential E3 ligases that may participate in the ubiquitination of p53. CONCLUSION: Aside from the ability to facilitate comprehensive investigations of protein ubiquitination networks, by integrating information regarding protein-protein interactions and substrate specificities, the proposed method could discover potential E3 ligases for ubiquitinated proteins. Our strategy presents an efficient means for the preliminary screen of ubiquitination networks and overcomes the challenge as a result of limited knowledge about E3 ligase-regulated ubiquitination.


Assuntos
Mapas de Interação de Proteínas , Ubiquitina-Proteína Ligases/fisiologia , Motivos de Aminoácidos , Sítios de Ligação , Curadoria de Dados , Bases de Dados de Proteínas , Humanos , Espectrometria de Massas , Domínios Proteicos , Especificidade por Substrato , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
BMC Bioinformatics ; 16 Suppl 18: S10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26680539

RESUMO

Protein O-GlcNAcylation, involving the ß-attachment of single N-acetylglucosamine (GlcNAc) to the hydroxyl group of serine or threonine residues, is an O-linked glycosylation catalyzed by O-GlcNAc transferase (OGT). Molecular level investigation of the basis for OGT's substrate specificity should aid understanding how O-GlcNAc contributes to diverse cellular processes. Due to an increasing number of O-GlcNAcylated peptides with site-specific information identified by mass spectrometry (MS)-based proteomics, we were motivated to characterize substrate site motifs of O-GlcNAc transferases. In this investigation, a non-redundant dataset of 410 experimentally verified O-GlcNAcylation sites were manually extracted from dbOGAP, OGlycBase and UniProtKB. After detection of conserved motifs by using maximal dependence decomposition, profile hidden Markov model (profile HMM) was adopted to learn a first-layered model for each identified OGT substrate motif. Support Vector Machine (SVM) was then used to generate a second-layered model learned from the output values of profile HMMs in first layer. The two-layered predictive model was evaluated using a five-fold cross validation which yielded a sensitivity of 85.4%, a specificity of 84.1%, and an accuracy of 84.7%. Additionally, an independent testing set from PhosphoSitePlus, which was really non-homologous to the training data of predictive model, was used to demonstrate that the proposed method could provide a promising accuracy (84.05%) and outperform other O-GlcNAcylation site prediction tools. A case study indicated that the proposed method could be a feasible means of conducting preliminary analyses of protein O-GlcNAcylation and has been implemented as a web-based system, OGTSite, which is now freely available at http://csb.cse.yzu.edu.tw/OGTSite/.


Assuntos
Aprendizado de Máquina , N-Acetilglucosaminiltransferases/metabolismo , Proteínas/química , Acetilglucosamina/metabolismo , Algoritmos , Motivos de Aminoácidos , Glicosilação , Internet , Espectrometria de Massas , Peptídeos/análise , Peptídeos/metabolismo , Proteínas/metabolismo , Especificidade por Substrato , Máquina de Vetores de Suporte , Interface Usuário-Computador
17.
PLoS One ; 10(4): e0118752, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849935

RESUMO

S-glutathionylation, the covalent attachment of a glutathione (GSH) to the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM) that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-glutathionylation remains unknown. Based on a total of 1783 experimentally identified S-glutathionylation sites from mouse macrophages, this work presents an informatics investigation on S-glutathionylation sites including structural factors such as the flanking amino acids composition and the accessible surface area (ASA). TwoSampleLogo presents that positively charged amino acids flanking the S-glutathionylated cysteine may influence the formation of S-glutathionylation in closed three-dimensional environment. A statistical method is further applied to iteratively detect the conserved substrate motifs with statistical significance. Support vector machine (SVM) is then applied to generate predictive model considering the substrate motifs. According to five-fold cross-validation, the SVMs trained with substrate motifs could achieve an enhanced sensitivity, specificity, and accuracy, and provides a promising performance in an independent test set. The effectiveness of the proposed method is demonstrated by the correct identification of previously reported S-glutathionylation sites of mouse thioredoxin (TXN) and human protein tyrosine phosphatase 1b (PTP1B). Finally, the constructed models are adopted to implement an effective web-based tool, named GSHSite (http://csb.cse.yzu.edu.tw/GSHSite/), for identifying uncharacterized GSH substrate sites on the protein sequences.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Glutationa/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cisteína/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Máquina de Vetores de Suporte , Tiorredoxinas/química , Tiorredoxinas/metabolismo
18.
BMC Bioinformatics ; 16 Suppl 1: S9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25708359

RESUMO

BACKGROUND: microRNAs (miRNAs) play a vital role in development, oncogenesis, and apoptosis by binding to mRNAs to regulate the posttranscriptional level of coding genes in mammals, plants, and insects. Recent studies have demonstrated that the expression of viral miRNAs is associated with the ability of the virus to infect a host. Identifying potential viral miRNAs from experimental sequence data is valuable for deciphering virus-host interactions. Thus far, a specific predictive model for viral miRNA identification has yet to be developed. METHODS AND RESULTS: Here, we present ViralmiR for identifying viral miRNA precursors on the basis of sequencing and structural information. We collected 263 experimentally validated miRNA precursors (pre-miRNAs) from 26 virus species and generated sequencing fragments from virus and human genomes as the negative dataset. Support vector machine and random forest models were established using 54 features from RNA sequences and secondary structural information. The results show that ViralmiR achieved a balanced accuracy higher than 83%, which is superior to that of previously developed tools for identifying pre-miRNAs. CONCLUSIONS: The easy-to-use ViralmiR web interface has been provided as a helpful resource for researchers to use in analyzing and deciphering virus-host interactions. The web interface of ViralmiR can be accessed at http://csb.cse.yzu.edu.tw/viralmir/.


Assuntos
Biologia Computacional/métodos , MicroRNAs/metabolismo , Precursores de RNA/metabolismo , RNA Viral/metabolismo , Máquina de Vetores de Suporte , Humanos , MicroRNAs/química , MicroRNAs/genética , Precursores de RNA/química , Precursores de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/química , RNA Viral/genética , Análise de Sequência de RNA
19.
Nucleic Acids Res ; 43(Database issue): D503-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25399423

RESUMO

Given the increasing number of proteins reported to be regulated by S-nitrosylation (SNO), it is considered to act, in a manner analogous to phosphorylation, as a pleiotropic regulator that elicits dual effects to regulate diverse pathophysiological processes by altering protein function, stability, and conformation change in various cancers and human disorders. Due to its importance in regulating protein functions and cell signaling, dbSNO (http://dbSNO.mbc.nctu.edu.tw) is extended as a resource for exploring structural environment of SNO substrate sites and regulatory networks of S-nitrosylated proteins. An increasing interest in the structural environment of PTM substrate sites motivated us to map all manually curated SNO peptides (4165 SNO sites within 2277 proteins) to PDB protein entries by sequence identity, which provides the information of spatial amino acid composition, solvent-accessible surface area, spatially neighboring amino acids, and side chain orientation for 298 substrate cysteine residues. Additionally, the annotations of protein molecular functions, biological processes, functional domains and human diseases are integrated to explore the functional and disease associations for S-nitrosoproteome. In this update, users are allowed to search a group of interested proteins/genes and the system reconstructs the SNO regulatory network based on the information of metabolic pathways and protein-protein interactions. Most importantly, an endogenous yet pathophysiological S-nitrosoproteomic dataset from colorectal cancer patients was adopted to demonstrate that dbSNO could discover potential SNO proteins involving in the regulation of NO signaling for cancer pathways.


Assuntos
Bases de Dados de Proteínas , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Aminoácidos/química , Animais , Doença , Humanos , Internet , Redes e Vias Metabólicas , Camundongos , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/metabolismo , Ratos , Transdução de Sinais
20.
Database (Oxford) ; 2014(0): bau034, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24771658

RESUMO

Protein phosphorylation catalyzed by kinases plays crucial roles in regulating a variety of intracellular processes. Owing to an increasing number of in vivo phosphorylation sites that have been identified by mass spectrometry (MS)-based proteomics, the RegPhos, available online at http://csb.cse.yzu.edu.tw/RegPhos2/, was developed to explore protein phosphorylation networks in human. In this update, we not only enhance the data content in human but also investigate kinase-substrate phosphorylation networks in mouse and rat. The experimentally validated phosphorylation sites as well as their catalytic kinases were extracted from public resources, and MS/MS phosphopeptides were manually curated from research articles. RegPhos 2.0 aims to provide a more comprehensive view of intracellular signaling networks by integrating the information of metabolic pathways and protein-protein interactions. A case study shows that analyzing the phosphoproteome profile of time-dependent cell activation obtained from Liquid chromatography-mass spectrometry (LC-MS/MS) analysis, the RegPhos deciphered not only the consistent scheme in B cell receptor (BCR) signaling pathway but also novel regulatory molecules that may involve in it. With an attempt to help users efficiently identify the candidate biomarkers in cancers, 30 microarray experiments, including 39 cancerous versus normal cells, were analyzed for detecting cancer-specific expressed genes coding for kinases and their substrates. Furthermore, this update features an improved web interface to facilitate convenient access to the exploration of phosphorylation networks for a group of genes/proteins. Database URL: http://csb.cse.yzu.edu.tw/RegPhos2/


Assuntos
Bases de Dados de Proteínas , Fosfoproteínas , Mapeamento de Interação de Proteínas/métodos , Proteínas Quinases , Transdução de Sinais , Perfilação da Expressão Gênica , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA