RESUMO
A smartphone-mediated self-powered biosensor is fabricated for miRNA-141 detection based on the CRISPR/Cas12a cross-cutting technique and a highly efficient nanozyme. As a novel nanozyme and a signal-amplified coreaction accelerator, the AuPtPd@GDY nanozyme exhibits an excellent ability to catalyze cascade color reactions and high conductivity to enhance the electrochemical signal for miRNA-141 assays. After CRISPR/Cas12a cross-cutting of S2-glucose oxidase (S2-GOD), the electrochemical signal is weakened, and miRNA-141 is detected by monitoring the decrease in the signal. On the other hand, a cascade reaction among glucose, H2O2, and TMB is catalyzed by GOD and AuPtPd@GDY, respectively, resulting in a color change of the solution, which senses miRNA-141. The self-powered biosensor enables value-assisted and visual detection of miRNA-141 with limits of detection of 3.1 and 15 aM, respectively. Based on the dual-modal self-powered sensing system, a smartphone-mediated "all-in-one" biosensing chip is designed to achieve the real-time and intelligent monitoring of miRNA-141. This work provides a new approach to design multifunctional biosensors to realize the visualization and portable detection of tumor biomarkers.
Assuntos
Técnicas Biossensoriais , MicroRNAs , Smartphone , MicroRNAs/análise , Humanos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Ouro/química , Limite de Detecção , Paládio/química , Sistemas CRISPR-CasRESUMO
Ru-doped Co9S8 hollow porous polyhedrons (Ru-Co9S8 HPPs) derived from zeolitic-imidazolate-frameworks were synthesized through hydrothermal coprecipitation and thermal decomposition methods. The results indicate that Ru-Co9S8-500 HPPs possess a strong Ru-Co synergistic effect, large electrochemical surface area, and sufficient active sites, endowing them with excellent hydrogen evolution reaction performance.
RESUMO
Lung cancer is a major malignant cancer with low survival rates, and early diagnosis is crucial for effective treatment. Herein, a biosensing platform that is self-powered derived from a capacitor-coupled EBFC has been developed for ultra-sensitive real-time identification of microRNA-21 (miRNA-21) with the assistance of a mobile phone. The flexible substrate of the platform is prepared on a carbon paper modified with graphdiyne and gold nanoparticles. The biosensor employs DNAzyme-mediated dual strand displacement amplification, which enhances the signal output intensity of the EBFC and improves selectivity. The coupling of the capacitor with the EBFC significantly amplifies the sensing signal, causing a 10.6-fold surge in current respond and further improving the sensitivity of the sensing platform. The established detection approach demonstrates a linear relationship varied from 0.0001 to 10,000 pM, with a sensitivity down to 32.3 aM as the minimum detectable limit, which has been effectively utilized for detecting miRNA-21 in practical samples. This sensing system provides strong support for the construction of portable detection devices, and the strategy of the platform construction provides an effective method for ultra-sensitive and accurate detection of miRNA, holding great potential in clinical diagnosis, prognosis evaluation, and drug screening for cancer.
Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , Nanopartículas Metálicas , MicroRNAs , Humanos , Neoplasias Pulmonares/diagnóstico , Smartphone , Ouro , MicroRNAs/genética , Técnicas Biossensoriais/métodos , Biomarcadores , Limite de Detecção , Técnicas EletroquímicasRESUMO
Hypoxia in water environment is one of the important problems faced by intensive aquaculture. Under hypoxia stress, the effects of dietary thiamine were investigated on grass carp gill tissue damage and their mechanisms. Six thiamine diets with different thiamine levels (0.22, 0.43, 0.73, 1.03, 1.33 and 1.63 mg/kg) were fed grass carp (Ctenopharyngodon idella) for 63 days. Then, 96-hour hypoxia stress test was conducted. This study described that thiamine enhanced the growth performance of adult grass carp and ameliorated nutritional status of thiamine (pyruvic acid, glucose, lactic acid and transketolase). Additionally, thiamine alleviated the deterioration of blood parameters [glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), glucose, cortisol, lactic dehydrogenase (LDH), erythrocyte fragility, and red blood cell count (RBC count)] caused by hypoxia stress, and reduced reactive oxygen species (ROS) content and oxidative damage to the gills. In addition, thiamine alleviated endoplasmic reticulum stress in the gills, which may be related to its inhibition of RNA-dependent protein kinase-like ER kinase (PERK)/eukaryotic translation initiation factor-2α (eIF2α)/activating transcription factor4 (ATF4), inositol-requiring enzyme 1 (IRE1)/X-Box binding protein 1 (XBP1) and activating transcription factor 6 (ATF6) pathways. Furthermore, thiamine maintaining mitochondrial dynamics balance was probably related to promoting mitochondrial fusion and inhibiting mitochondrial fission, and inhibiting mitophagy may involve PTEN induced putative kinase 1 (PINK1)/Parkin-dependent pathway and hypoxia-inducible factor (HIF)-Bcl-2 adenovirus E1B 19 kDa interacting protein 3 (BNIP3) pathway. In summary, thiamine alleviated hypoxia stress in fish gills, which may be related to reducing endoplasmic reticulum stress, regulating mitochondrial dynamics balance and reducing mitophagy. The thiamine requirement for optimum growth [percent weight gain (PWG)] of adult grass carp was estimated to be 0.81 mg/kg diet. Based on the index of anti-hypoxia stress (ROS content in gill), the thiamine requirement for adult grass carp was estimated to be 1.32 mg/kg diet.
Assuntos
Carpas , Brânquias , Animais , Brânquias/metabolismo , Carpas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Peixes/metabolismo , Imunidade Inata , Dieta/veterinária , Homeostase , Glucose/metabolismo , Ração Animal/análiseRESUMO
Research has shown that microRNAs exhibit regular dysregulation in cancers, making them potential biomarkers for cancer diagnosis. However, achieving specific and sensitive detection of microRNAs has been a challenging task. To address this issue, two-dimensional networked graphdiyne is used to fabricate a self-powered biosensor and establish a new approach for ultra-responsive dual-mode detection of miRNA-141, a breast cancer biomarker. This method detects miRNA-141 using both electrochemical and colorimetric modes by measuring the output electrical signal of an enzyme-based biofuel cell and the RGB blue value of the electrolyte solution. Tetrahedral DNA and DNA nanorods also are immobilized on the electrode as a biocathode and methylene blue is used as the electron acceptor, which is fixed in the DNA phosphate backbone through electrostatic adsorption. The bioanode catalyzes the oxidation of glucose to produce electrons, which reduces methylene blue to its reduced form, resulting in a high open-circuit voltage (EOCV) and a highger RGB Blue value, enabling dual-mode detection. A reliable linear correlation is observed between EOCV values and miRNA-141 concentrations ranging from 0.0001 to 100 pM, with a detection limit of 21.9 aM (S/N = 3). Additionally, the colorimetric mode also demonstrates a reliable linear correlation with a concentration range of 0.0001-10000 pM, and this method can detect a concentration of 22.2 aM (S/N = 3). This innovative research realizes sensitive and accurate determination of miRNA-141 and provides an important new method for cancer diagnosis.
Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , MicroRNAs , Nanotubos , Humanos , Feminino , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Azul de Metileno , DNA , Técnicas Biossensoriais/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodosRESUMO
One of the highly attractive research directions in the electrochemiluminescence (ECL) field is how to regulate and improve ECL efficiency. Quantum dots (QDs) are highly promising ECL materials due to their adjustable luminescence size and strong luminous efficiency. MoS2 NSs@QDs, an ECL emitter, is synthesized via hydrothermal methods, and its ECL mechanism is investigated using cyclic voltammetry and ECL-potential curves. Then, a stable and vertical attachment of a triplex DNA (tsDNA) probe to the MoS2 nanosheets (NSs) is applied to the electrode. Next, an innovative ECL sensor is courageously empoldered for precise and ultrasensitive detection of target miRNA-199a through the agency of ECL-resonance energy transfer (RET) strategy and a dextrous target-initiated catalytic three-arm DNA junction assembly (CTDJA) based on a toehold strand displacement reaction (TSDR) signal amplification approach. Impressively, the ingenious system not only precisely regulates the distance between energy donor-acceptor pairs leave energy less loss and more ECL-RET efficiency, but also simplifies the operational procedure and verifies the feasibility of this self-assembly process without human intervention. This study can expand MoS2 NSs@QDs utilization in ECL biosensing applications, and the proposed nucleic acid amplification strategy can become a miracle cure for ultrasensitive detecting diverse biomarkers, which helps researchers to better study the tumor mechanism, thereby unambiguously increasing cancer cure rates and reducing the risk of recurrence.
Assuntos
DNA Catalítico , MicroRNAs , Humanos , Molibdênio , Catálise , EletrodosRESUMO
MicroRNA-21 (miRNA-21) is currently the only known oncogenic miRNA that is upregulated in almost all malignant tumors and exhibits a broad spectrum of tumor recognition characteristics. It holds significant value in the early diagnosis, malignant degree assessment, and prognostic evaluation of tumors. In this study, a novel dual-mode self-powered sensing platform is developed using Au nanoparticles/graphdiyne as the electrode substrate and combined with DNA nanoring for highly sensitive and specific detection of miRNA-21. The DNA nanoring structure, which is easy to prepare and contains multiple recognition sites, induces significant electrochemical/colorimetric signal responses of the signaling molecule methylene blue. Under optimal conditions, the linear ranges of the electrochemical and colorimetric detection modes of this self-powered sensor are 0.1 fM-100 pM and 0.1 fM-10 nM, respectively, with the detection limits of 35.1 aM and 61.6 aM (S/N=3). This strategy provides a new reference for the sensitive detection of microRNA and has immense potential for application in the screening and detection of clinical nucleic acid diseases.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Biomarcadores Tumorais/genética , Ouro/química , Nanopartículas Metálicas/química , DNA/química , MicroRNAs/genética , Limite de Detecção , Técnicas EletroquímicasRESUMO
In this work, an ingenious sensor technology was established by integrating the EBFCs on a flexible paper strip carrier (PE) that was used for simultaneous detection of tumor markers in complex samples. Adopting high performance ultrathin graphdiyne (U-GDY) as the substrate can increase the enzyme load, accelerate the electron transfer rate, and significantly enhance the detection sensitivity. A homologous DNA nanomanager strategy cleverly uses signal switches to recycle and amplify target miRNAs, while the smartphone receives real-time instantaneous current values to realize multivariate detection. Electrochemical data show that the detection limits (LODs) of miRNA-21 and miRNA-155 are 0.09 and 0.15 fM in the wide concentration range. The results confirm that the tailored sensor platform provides a strategy for the early cancer diagnosis and lays the foundation for the construction of a flexible wearable platform.
Assuntos
MicroRNAs , Neoplasias , Humanos , Smartphone , Neoplasias/diagnóstico , Biomarcadores Tumorais , DNARESUMO
Two-dimensional carbon-coated molybdenum disulfide (MoS2@C) hollow nanorods are combined with nucleic acid signal amplification strategies and DNA hexahedral nanoframework to construct a novel self-powered biosensing platform for ultra-sensitive dual-mode detection of tumor suppressor microRNA-199a. The nanomaterial is applied on carbon cloth and then modified with glucose oxidase or using as bioanode. A large number of double helix DNA chains are produced on bicathode by nucleic acid technologies including 3D DNA walker, hybrid chain reaction and DNA hexahedral nanoframework to adsorb methylene blue, producing high EOCV signal. Methylene blue also is reduced and an increased RGB Blue value is observed. For microRNA-199a detection, the assay shows a extensive linear range of 0.0001-100 pM with a low detection limit of 4.94 amol/L (S/N = 3). The method has been applied to the detection of actual serum samples, providing a novel method for the accurate and sensitive detection of tumor markers.
Assuntos
Técnicas Biossensoriais , Neoplasias Hepáticas , MicroRNAs , Nanotubos , Humanos , Molibdênio , Azul de Metileno , Técnicas Biossensoriais/métodos , DNA , Carbono , Limite de Detecção , Técnicas Eletroquímicas/métodosRESUMO
We report here for the first time a self-powered biosensing platform based on graphene/graphdiyne/graphene (GDY-Gr) heterostructure substrate material for ultrasensitive hepatocarcinoma marker (microRNA-21) detection in both electrochemical and colorimetric test modes. The dual-mode signal intuitively displayed on a smartphone fundamentally improves the detection accuracy. In electrochemical mode, the calibration curve is established in the linear range of 0.1-10000 fM, and the detection limit is as low as 0.333 fM (S/N = 3). Simultaneously, colorimetric analysis of the miRNA-21 is realized by using ABTS as an indicator. The detection limit is confirmed as 32 fM (S/N = 3), and miRNA-21 of concentration from 0.1 pM to 1 nM exhibit a linear relationship with R2 = 0.9968. Overall, the combination of GDY-Gr and multiple signal amplification strategy significantly improved the sensitivity by 310 times compared with traditional enzymatic biofuel cells (EBFCs) based detection platform, showing broad application prospects for on-site analysis and future mobile medical services.
Assuntos
Técnicas Biossensoriais , Grafite , MicroRNAs , MicroRNAs/análise , Grafite/química , Técnicas Eletroquímicas , Limite de DetecçãoRESUMO
A novel self-powered biosensor is engineered by the integration of DNAzyme walker and AuNPs/graphdiyne biosensing interface, realizing sensitive detection of target microRNA. The cleverly constructed DNAzyme walker with outstanding signal transduction ability to obtain an amplified signal response. In addition, the AuNPs/graphdiyne significantly improves electron transport speed of biosensing interface for improving the sensitivity of biosensor. A dynamic linear range of 0.05 fM-10 pM with a low detection limit of 0.015 fM (S/N = 3) is obtained by utilizing the self-powered biosensor. Meanwhile, the developed self-powered biosensor is capable of assaying miRNA-21 in human serum samples with satisfactory recoveries. This strategy provides a valid method for the sensitive microRNA detection, and shows great potential in point-care detection of tumor biomarker.
Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , MicroRNAs , Humanos , MicroRNAs/genética , Ouro , Limite de Detecção , Técnicas Biossensoriais/métodos , Técnicas EletroquímicasRESUMO
A self-powered biosensor (SPB) was constructed for the ultra-sensitive detection of microRNA-155 (miR-155) by combining a capacitor/enzymatic biofuel cell (EBFC), a strategy of rolling circle amplification (RCA) and a digital multimeter (DMM). The experimental results show that the sensitivity of the assembled EBFC-SPB can reach 15.85 µA/pM with the action of matching capacitor, which is 513% of that without capacitor (3.09 µA/pM). This achieves the first signal amplification. Furthermore, when the target miR-155 triggers RCA, electrons are continuous generated and flow to the biocathode through the external circuit to catalyze the reduction of oxygen and release [Ru(NH3)6]3+ electron acceptor. This achieves the second signal amplification. Finally, DMM is used to convert the signal into instantaneous current and amplify it for real-time reading. This achieves the third signal amplification. Therefore, the limit of detection (LOD) of the developed biosensor is as low as 0.17 fM (S/N = 3), and the linear range is between 0.5 fM and 10,000 fM, indicating that the EBFC-SPB has a broad application prospect for cancer marker of miR-155 with ultrasensitive detection.
Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , MicroRNAs , Limite de Detecção , Técnicas Biossensoriais/métodos , Catálise , Técnicas Eletroquímicas/métodos , Técnicas de Amplificação de Ácido Nucleico/métodosRESUMO
A real-time self-powered biosensor is designed for ultrasensitive detection of microRNA-21 based on electrochemical energy device capacitor and target-induced recycling double amplification strategy, which greatly improves the output signal by converting a small number of targets into two glucose oxidase labeled output strand DNAs, and the squeezed-out output strand is recycled by the cathode to fix more signal [Ru(NH3)6]3+ to further improve the detection signal. A digital multimeter (DMM) is connected to computer for real-time displaying the output signal of the self-powered biosensing system, which improves the accuracy of the sensing platform. The sensitivity of the proposed biosensor is 116.15 µA/pM for target microRNA-21, which is 32.26 times higher than that of pure EBFC (3.6 µA/pM). The target concentration is proportional to the open-circuit voltage value in a wide linear range of 0.1-10000 fM with a low detection limit of 0.04 fM (S/N = 3). The method shows high sensitivity and excellent selectivity, and can be applied to detect tumor marker microRNA-21 in biological matrix.
Assuntos
Técnicas Biossensoriais , MicroRNAs , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , DNA , Eletrodos , Limite de DetecçãoRESUMO
The latest research shows that the expression level of microRNA-141 can predict the number of prostate cancer cells in the human body and has become an important biomarker. In this paper, an all-carbon sandwich self-powered biosensor based on graphene and carbon cloth is constructed for the highly sensitive detection of the prostate tumor marker miRNA-141. First, gold nanoparticles modified carbon cloth is applied for substrate electrode, and bilirubin oxidase is then immobilized on it to prepare the biocathode of the biofuel cell. Then, aptamer 1 is immobilized on gold nanoparticles-modified carbon cloth as the electrode substrate. The bioconjugate is prepared by immobilizing the aptamer 2-glucose oxidase complex on gold nanoparticles/graphene. In the biofuel cell-based self-powered sensing system, when the target microRNA-141 is present, it undergoes complementary base pairing with aptamer 1 and aptamer 2, and the bioconjugates are immobilized on the anode to form the sandwich structure. The enzyme on the anode undergoes an oxidation reaction to catalyze the reduction of oxygen, and the electrochemical respond of the system increases significantly. The results show that the concentration of microRNA-141 is proportional to the open-circuit voltage value ranging from 0.0001 to 1000 pmol/L with a detection limit of 50 amol/L (S/N = 3). The method has high sensitivity and excellent selectivity and can be applied to sensitively detect tumor marker microRNA-141 in biological matrix.
Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , MicroRNAs , Humanos , Ouro/química , Carbono , Grafite/química , Limite de Detecção , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , MicroRNAs/químicaRESUMO
Realization of a highly sensitive analysis and sensing platform is important for early-stage tumor diagnosis. In this work, a self-powered biosensor with a novel sandwich graphdiyne (SGDY) combined with an aptamer-specific recognition function was developed to sensitively and accurately detect tumor markers. Results indicated that the detection limits of microRNA (miRNA)-21 and miRNA-141 were 0.15 and 0.30 fM (S/N = 3) in the linear range of 0.05-10000 and 1-10000 fM, respectively. The newly designed platform has great promise for early-stage tumor diagnosis.
Assuntos
Técnicas Biossensoriais , MicroRNAs , Neoplasias , Humanos , Biomarcadores Tumorais , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Neoplasias/diagnóstico , Limite de Detecção , Técnicas EletroquímicasRESUMO
Graphdiyne (GDY) is an sp and sp2 co-hydrocarbon allotrope whose particular structure endows it with many fascinating properties, including abundant chemical bonds, high conjugation, natural pores, high carrier mobility, high conductivity and stability, etc. In this work, two-dimensional graphdiyne is prepared as an electrode substrate material coupling with an exonuclease III-assisted amplification strategy to construct a superior-performance self-powered biosensor based on enzymatic biofuel cells for highly sensitive detection of the tumour marker miRNA-21. Glucose oxidase (GOD) is first immobilized on the GDY/AuNP composite to prepare a bioconjugate. GDY/AuNP modified carbon cloth is used as an enzyme biofuel cell electrode, which is then modified with bilirubin oxidase as a biocathode. The bioconjugate binds to GOD through specific binding to the bioanode. When miRNA-21 is present, specific recognition by exonuclease III in the system results in cleavage of the capture probe, and miRNA-21 is recovered and involved in the cycle. The target miRNA-21 then causes corresponding changes in the open-circuit voltage of the self-powered system. Based on this, a sensitive detection method was constructed, within the scope from 0.1 fM to 0.1 nM with a shallow detection limit of 55.2 aM (S/N = 3). The new approach triumphantly has been used to detect miRNA-21 in serum, which provides a compelling new way for early diagnosis of related cancers.
Assuntos
Técnicas Biossensoriais , MicroRNAs , MicroRNAs/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Glucose Oxidase/químicaRESUMO
Rolling circle amplification (RCA) is a simple and isothermal DNA amplification technique that is used to generate thousands of repeating DNA sequences using circular templates under the catalysis of DNA polymerase. Compared to alternating temperature nucleic acid amplification such as polymerase chain reaction (PCR) amplification, RCA is more suitable for on-spot detection without the need for an expensive thermal cycler. In this study, the principle and classification of RCA are introduced, and the applications of RCA in the detection of pathogenic bacteria, nucleic acid tumor markers, viruses, and proteins are reviewed. Finally, the perspectives of RCA in biological detection are anticipated. The RCA method has a great potential for biological detection. This review aims to provide references for the further development and application of the RCA technique in biosensors.
Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Técnicas Biossensoriais/métodos , DNA Polimerase Dirigida por DNA , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da PolimeraseRESUMO
The detection of microRNA (miRNA) in human serum has great significance for cancer prevention. Herein, a novel self-powered biosensing platform is developed, which effectively integrates an enzymatic biofuel cell (EBFC)-based self-powered biosensor with a matching capacitor for miRNA detection. A catalytic hairpin assembly and hybrid chain reaction are used to improve the analytical performance of EBFC. Furthermore, the matching capacitor is selected as an auxiliary signal amplifying device, and graphdiyne is applied as substrate material for EBFC. The results confirm that the developed method obviously increases the output current of EBFC, and the sensitivity can reach 2.75 µA/pM, which is 786% of pure EBFC. MiRNA can be detected in an expanded linear range of 0.1-100000 fM with a detection limit of 0.034 fM (S/N = 3). It can offer a selective and sensitive platform for nucleotide sequence detection with great potential in clinical diagnostics.
Assuntos
Técnicas Biossensoriais , MicroRNAs , Técnicas Eletroquímicas , Grafite , Humanos , Limite de Detecção , MicroRNAs/isolamento & purificaçãoRESUMO
Nickel-iron (Ni-Fe) batteries are promising candidates for large-scale energy storage due to their high safety and low cost. However, their power density and cycling efficiency remain limited by the poor kinetics of the Fe anode. Herein, we report high-performance Fe anodes based on active Fe nanoparticles conformally coated with carbon shells, which were synthesized from low-cost precursors using a scalable process. Such core-shell structured C-Fe anodes offer high electrochemical activity and stability. Specifically, a high specific capacity of 208 mAh g-1 at a current density of 1 A g-1 (based on the total weight of Fe and C) and a capacity retention of 93% after 2000 cycles at 4 A g-1 can be achieved. When coupled with a Ni cathode, such a full cell battery can deliver a high energy density of 101.0 Wh kg-1 at power density of 0.81 kW kg-1 and 51.6 Wh kg-1 at 8.2 kW kg-1 (based on the mass of the electrode materials), among the best energy and power performance among Ni-Fe batteries reported results. Thus, this work may provide an effective and scalable route toward high-performance anodes for high-power and long-life Ni-Fe batteries.
RESUMO
A high-energy self-powered sensing platform for the ultrasensitive detection of proteins is developed based on enzymatic biofuel cells (EBFCs) by using DNA bioconjugate assisted signal amplification. A nitrogen doped ultra-thin carbon shell/gold nanoparticle (N-UHCS/AuNPs) composite was prepared and applied as an electrode supporting substrate to improve the enzyme load. The biocathode of the self-powered sensor is constructed through the step-by-step modification of N-UHCS/AuNPs and bilirubin oxidase (BOD) on carbon paper (CP). To fabricate the bioanode, SiO2 nanospheres@AuNPs-aptamer (SiO2@AuNPs-ssDNA) bioconjugates were prepared and modified on CP. When there is a target protein, the aptamer recognizes it and causes the SiO2@AuNPs-ssDNA bioconjugate to fall off the bioanode, resulting in a significant increase in the open circuit voltage (EOCV) of the sensing device. Under optimal conditions, the developed biosensor shows a wide linear range of 0.1-2000 ng mL-1 with a low detection limit of 21.5 pg mL-1 (S/N = 3). This work shows an effective assay for the sensitive detection of biomolecules by coupling EBFCs, DNA bioconjugates and the biosensing characteristics of smart nanostructures.