RESUMO
Pyroptosis is a novel pro-inflammatory mode of programmed cell death that differs from ferroptosis, necrosis, and apoptosis in terms of its onset and regulatory mechanisms. Pyroptosis is dependent on cysteine aspartate protein hydrolase (caspase)-mediated activation of GSDMD, NLRP3, and the release of pro-inflammatory cytokines, interleukin-1 (IL-1ß), and interleukin-18 (IL-18), ultimately leading to cell death. Non-coding RNA (ncRNA) is a type of RNA that does not encode proteins in gene transcription but plays an important regulatory role in other post-transcriptional links. NcRNA mediates pyroptosis by regulating various related pyroptosis factors, which we termed the pyroptosis signaling pathway. Previous researches have manifested that pyroptosis is closely related to the development of liver diseases, and is essential for liver injury, alcoholic fatty liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and liver cancer. In this review, we attempt to address the role of the ncRNA-mediated pyroptosis pathway in the above liver diseases and their pathogenesis in recent years, and briefly outline that TCM (Traditional Chinese Medicine) intervene in liver diseases by modulating ncRNA-mediated pyroptosis, which will provide a strategy to find new therapeutic targets for the prevention and treatment of liver diseases in the future.
RESUMO
ω-3 polyunsaturated fatty acids (PUFA) are known to directly repress tumor development and progression. In this study, we explored whether docosahexaenoic acid (DHA), a type of ω-3 PUFA, had an immunomodulatory role in inhibiting tumor growth in immunocompetent mice. The number of natural killer (NK) cells but not the number of T or B cells was decreased by DHA supplementation in various tissues under physiologic conditions. Although the frequency and number of NK cells were comparable, IFNγ production by NK cells in both the spleen and lung was increased in DHA-supplemented mice in the mouse B16F10 melanoma tumor model. Single-cell RNA sequencing revealed that DHA promoted effector function and oxidative phosphorylation in NK cells but had no obvious effects on other immune cells. Using Rag2-/- mice and NK-cell depletion by PK136 antibody injection, we demonstrated that the suppression of B16F10 melanoma tumor growth in the lung by DHA supplementation was dependent mainly on NK cells. In vitro experiments showed that DHA directly enhanced IFNγ production, CD107a expression, and mitochondrial oxidative phosphorylation (OXPHOS) activity and slightly increased proliferator-activated receptor gamma coactivator-1α (PGC-1α) protein expression in NK cells. The PGC-1α inhibitor SR-18292 in vitro and NK cell-specific knockout of PGC-1α in mice reversed the antitumor effects of DHA. In summary, our findings broaden the current knowledge on how DHA supplementation protects against cancer growth from the perspective of immunomodulation by upregulating PGC-1α signaling-mediated mitochondrial OXPHOS activity in NK cells.
Assuntos
Ácidos Docosa-Hexaenoicos , Células Matadoras Naturais , Melanoma Experimental , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Melanoma Experimental/imunologia , Melanoma Experimental/tratamento farmacológico , Camundongos Knockout , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Linhagem Celular Tumoral , Ácidos Graxos Ômega-3/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismoRESUMO
BACKGROUND: The understanding of the heterogeneous cellular microenvironment of colonic polyps in paediatric patients with solitary juvenile polyps (SJPs), polyposis syndrome (PJS) and Peutz-Jeghers syndrome (PJS) remains limited. METHODS: We conducted single-cell RNA sequencing and multiplexed immunohistochemistry (mIHC) analyses on both normal colonic tissue and different types of colonic polyps obtained from paediatric patients. RESULTS: We identified both shared and disease-specific cell subsets and expression patterns that played important roles in shaping the unique cellular microenvironments observed in each polyp subtype. As such, increased myeloid, endothelial and epithelial cells were the most prominent features of SJP, JPS and PJS polyps, respectively. Noticeably, memory B cells were increased, and a cluster of epithelial-mesenchymal transition (EMT)-like colonocytes existed across all polyp subtypes. Abundant neutrophil infiltration was observed in SJP polyps, while CX3CR1hi CD8+ T cells and regulatory T cells (Tregs) were predominant in SJP and JPS polyps, while GZMAhi natural killer T cells were predominant in PJS polyps. Compared with normal colonic tissues, myeloid cells exhibited specific induction of genes involved in chemotaxis and interferon-related pathways in SJP polyps, whereas fibroblasts in JPS polyps had upregulation of myofiber-associated genes and epithelial cells in PJS polyps exhibited induction of a series of nutrient absorption-related genes. In addition, the TNF-α response was uniformly upregulated in most cell subsets across all polyp subtypes, while endothelial cells and fibroblasts separately showed upregulated cell adhesion and EMT signalling in SJP and JPS polyps. Cell-cell interaction network analysis showed markedly enhanced intercellular communication, such as TNF, VEGF, CXCL and collagen signalling networks, among most cell subsets in polyps, especially SJP and JPS polyps. CONCLUSION: These findings strengthen our understanding of the heterogeneous cellular microenvironment of polyp subtypes and identify potential therapeutic approaches to reduce the recurrence of polyps in children.
Assuntos
Pólipos do Colo , Humanos , Criança , Linfócitos T CD8-Positivos , Células Endoteliais , Microambiente Celular , Comunicação CelularRESUMO
PURPOSE: Methyltransferase-like 3 (METTL3), a key member of the m6A methyltransferase complex, is upregulated in multiple human malignancies and plays a role in regulating tumor migration. This study aimed to reveal the underlying mechanism by which METTL3 in regulates the metastasis of colorectal cancer (CRC). METHODS: We compared METTL3 expression levels in CRC tumor tissues and adjacent nontumor tissues by immunohistochemistry (IHC). The functional roles of METTL3 in CRC were assessed by real-time cell migration assays, wound-healing assays and Transwell assays. miRNA sequencing (miRNA-seq), RNA-binding protein immunoprecipitation (RIP) assays and N6-methyladenosine immunoprecipitation (MeRIP) assays were performed to confirm the molecular mechanism underlying the involvement of METTL3 in CRC cell metastasis. RESULTS: We found that METTL3 was overexpressed in CRC tissues. METTL3 knockdown significantly inhibited CRC cell migration and invasion, while METTL3 overexpression had the opposite effects. Furthermore, we demonstrated that METTL3 regulates miR-196b expression via an N6-methyladenosine (m6A)-pri-miR-196b-dependent mechanism and thereby promotes CRC metastasis. CONCLUSION: This study shows the important role of METTL3 in CRC metastasis and provides novel insight into m6A modification in CRC metastasis.
Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , Adenosina , Movimento Celular/genética , Metiltransferases/genética , Neoplasias Colorretais/genéticaRESUMO
Recent studies have identified pleiotropic roles of methyltransferase-like 3 (METTL3) in tumor progression. However, the roles of METTL3 in esophageal squamous cell carcinoma (ESCC) are still unclear. Here, we investigated the function and mechanism of METTL3 in ESCC tumorigenesis. We reported that higher METTL3 expression was found in ESCC tissues and was markedly associated with depth of invasion and poor prognosis. Loss- and gain-of function studies showed that METTL3 promoted the migration and invasion of ESCC cells in vitro. Integrated methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq) analysis first demonstrated that glutaminase 2 (GLS2) was regulated by METTL3 via m6A modification. Our findings identified METTL3/GLS2 signaling as a potential therapeutic target in antimetastatic strategies against ESCC.
RESUMO
PURPOSE: EF24, a synthetic analogue of curcumin, was developed as an anti-tumor compound to induce apoptosis, inhibit proliferation and metastasis in various cancers. However, whether EF24 induces ferroptosis in osteosarcoma cells or not, and its underlying mechanism remains largely elusive. METHODS: After EF24 combining with or without other compounds treatments, mRNA expression profiles were proceeded by RNA sequencing. Cytotoxicity was measured by cell counting kit-8 assay. Cell death was quantified by flow cytometer. Gene expression was quantified by real-time PCR. Protein level was detected by western blot. Malonydialdehyde (MDA) level was measured by lipid peroxidation MDA assay kit. Reactive oxygen species (ROS) level was measured by ROS Assay Kit. Ferric ion was measured by Iron Assay kit. RESULTS: EF24 significantly induced cell death in osteosarcoma cell lines, and this effect was significantly reversed by ferrostatin-1, but not Z-VAD(Ome)-FMK, MRT68921 or necrosulfonamide. EF24 significantly increased MDA level, ROS level and intracellular ferric ion level, these effects were significantly attenuated by ferrostatin-1. EF24 upregulated HMOX1 expression in a dose dependent manner, overexpression of HMOX1 facilitated EF24 to induce ferroptosis in osteosarcoma cell lines. HMOX1 knockdown attenuated EF24-induced cytotoxicity and attenuated EF24-induced inhibition of Glutathione Peroxidase 4 (GPX4) expression. CONCLUSION: Our results showed that EF24 upregulated HMOX1 to suppress GPX4 expression to induce ferroptosis by increasing MDA level, ROS level and intracellular ferric ion level. Thus, EF24 might serve as a potential agent for the treatment of HMOX1-positive osteosarcoma patients.
Assuntos
Antineoplásicos/farmacologia , Compostos de Benzilideno/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Osteossarcoma/tratamento farmacológico , Piperidonas/farmacologia , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Heme Oxigenase-1/genética , Humanos , Ferro/metabolismo , Malondialdeído/metabolismo , Osteossarcoma/enzimologia , Osteossarcoma/genética , Osteossarcoma/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de SinaisRESUMO
Circular RNAs (circRNAs) are a newly discovered type of biological molecule that belongs to the noncoding RNA family. Abundant evidence has shown that circRNAs are involved in the progression of various cancers. However, the particular functions of circRNAs in colorectal cancer (CRC) remain elusive. In this study, we investigated the differentially expressed circRNAs in three pairs of cancer tissue and adjacent normal tissue of CRC. We revealed that circGLIS2 expression was higher in CRC tissue and cell lines. Gain-and-loss function assays showed that circGLIS2 was involved in the regulation of cell migration. Moreover, overexpressing circGLIS2 in CRC cells activated the NF-κB pathway and induced pro-inflammatory chemokine production, which evoked tumor-associated inflammation through recruiting leukocytes. In turn, when the cancer cells were exposed to the supernatant of circGLIS2 overexpressed cancer cells, they were endowed with the ability of migration and chemokines production. Furthermore, the rescue assay confirmed that circGLIS2 activated NF-κB signaling and promoted cell migration by sponging miR-671. Overall, our study reveals that circGLIS2, acting as a potential oncogene, maintains the abnormal activation state of the NF-κB signaling pathway via the miR-671 sponge mechanism in CRC cells. This study provides a scientific basis for targeting circGLIS2 in colorectal cancer interventions.
Assuntos
Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Fatores de Transcrição Kruppel-Like/sangue , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias do Colo/sangue , Neoplasias Colorretais/sangue , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , RNA CircularRESUMO
Developing new drugs for killing colorectal cancer (CRC) cells is urgently needed. Here, we explored the antitumor effects of toosendanin (TSN) in CRC, as well as explored its antitumor mechanisms and direct targets. Cell proliferation and apoptosis were analyzed by CCK8, colony formation, real-time cell impedance and flow cytometry. The signaling pathway and Wnt activity were analyzed by Wnt luciferase activity assay, quantitative real-time PCR and western blot. The interaction between TSN and the κ-opioid receptor was analyzed by a molecular docking simulation. BALB/c nude mice were used to detect the effects of TSN on tumor growth in vivo. We found that TSN inhibited proliferation, induced G1 phase arrest and caused caspase-dependent apoptosis in both 5-FU-sensitive and 5-FU-resistant CRC cells. Moreover, TSN effectively inhibited CRC growth in vivo. In terms of the mechanism, TSN inhibited Wnt/ß-catenin signaling in CRC cells, and the molecular docking results showed that TSN could bind to κ-opioid receptors directly. Additionally, TSN-induced apoptosis and ß-catenin decline were both reversed by the selective κ-opioid receptor agonist U50,488H. Our data demonstrate that TSN-induced apoptosis in CRC cells is associated with the κ-opioid receptor/ß-catenin signaling axis, and TSN has promising potential as an antitumor agent for CRC treatment.
Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Receptores Opioides kappa/metabolismo , beta Catenina/metabolismo , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Feminino , Fluoruracila/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/química , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genéticaRESUMO
PURPOSE: Dysregulation of microRNAs (miRNAs) contributes to tumor progression via the regulation of the expression of specific oncogenes and tumor suppressor genes. One such example, miR-27b-3p, has reportedly been involved in tumor progression in many types of cancer. The aim of the present study was to delve into the role and the underlying mechanism of miR-27b-3p in colorectal cancer (CRC) cells. METHODS: In the present study, we detected the expression level of miR-27b-3p by RT-PCR. The effect of miR-27b-3p overexpression on cell proliferation in CRC cells was evaluated by cell counting and Edu assays. Transwell migration and invasion assays were used to examine the effects of cell migration and invasion. Bioinformatics, luciferase reporter assay and western blot assay were performed to identify the target of miR-27b-3p. RESULTS: Here, we have demonstrated that although miR-27b-3p can affect cell morphology, it has no observable effect on the proliferation of CRC cells. However, it significantly promotes the migration and invasion of CRC cells. We discovered that HOXA10 was a newly identified target of miR-27b-3p in CRC cells, as confirmed by bioinformatics, western blots and dual luciferase reporter assay. Furthermore, the overexpression of miR-27b-3p or the suppression of HOXA10 can activate the integrin ß1 signaling pathway. In conclusion, our results reveal a new function of miR-27b-3p that demonstrates its ability to promote CRC cell migration and invasion by targeting the HOXA10/integrin ß1 cell signal axis. CONCLUSION: This may provide a mechanism to explain why miR-27b-3p promotes CRC cell migration and invasion.
Assuntos
Neoplasias Colorretais/genética , Proteínas Homeobox A10/genética , MicroRNAs/genética , Invasividade Neoplásica/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/patologiaRESUMO
Novel drugs are urgently needed for gastric cancer (GC) treatment. The thioredoxin-thioredoxin reductase (TRX-TRXR) system has been found to play a critical role in GC tumorigenesis and progression. Thus, agents that target the TRX-TRXR system may be highly efficacious as GC treatments. In this study, we showed that chaetocin, a natural product isolated from the Chaetomium species of fungi, inhibited proliferation, induced G2/M phase arrest and caspase-dependent apoptosis in both in vitro and in vivo models (cell xenografts and patient-derived xenografts) of GC. Chaetocin inactivated TRXR-1, resulting in the accumulation of reactive oxygen species (ROS) in GC cells; overexpression of TRX-1 as well as cotreatment of GC cells with the ROS scavenger N-acetyl-L-cysteine attenuated chaetocin-induced apoptosis; chaetocin-induced apoptosis was significantly increased when GC cells were cotreated with auranofin. Moreover, chaetocin was shown to inactivate the PI3K/AKT pathway by inducing ROS generation; AKT-1 overexpression also attenuated chaetocin-induced apoptosis. Taken together, these results reveal that chaetocin induces the excessive accumulation of ROS via inhibition of TRXR-1. This is followed by PI3K/AKT pathway inactivation, which ultimately inhibits proliferation and induces caspase-dependent apoptosis in GC cells. Chaetocin therefore may be a potential agent for GC treatment.
Assuntos
Morte Celular/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Tiorredoxina Redutase 1/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Auranofina/farmacologia , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/genética , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Tiorredoxina Redutase 1/genética , Tiorredoxinas/genéticaRESUMO
BACKGROUND: Indoleamine 2,3-dioxygenase 1 (IDO1) is a critical regulator of T cell function, contributing to immune tolerance. Upregulation of IDO1 has been found in many cancer types; however, the regulatory mechanisms and clinical significance of IDO1 in colon cancer are still unclear. Here, we investigated the role of dysregulated microRNA (miRNA) targeting IDO1 in the colon cancer microenvironment. METHODS: We elucidated IDO1 function by performing cell-based assays and establishing transplanted tumor models in BALB/c mice and BALB/c nude mice. We evaluated IDO1 protein expression by immunohistochemistry (IHC) in a tissue microarray (TMA) and analyzed IDO1 mRNA expression with The Cancer Genome Atlas (TCGA). We screened miRNAs targeting IDO1 by using a dual luciferase reporter assay. We tested the function of microRNA-448 (miR-448) by using western blotting (WB) and fluorescence-activated cell sorting (FACS). RESULTS: We demonstrated that stable IDO1 overexpression enhanced xenograft tumor growth in BALB/c mice but not in BALB/c nude mice. We also revealed the involvement of posttranscriptional regulation of IDO1 in colon cancer by observing IDO1 protein levels and mRNA levels. Furthermore, ectopic expression of miRNA mimics suggested that miR-448 could significantly downregulate IDO1 protein expression. Notably, we proved that miR-448 suppressed the apoptosis of CD8+ T cells by suppressing IDO1 enzyme function. CONCLUSION: Our findings indicated that IDO1 suppressed the CD8+ T cell response in colon cancer. miR-448, as a tumor-suppressive miRNA, enhanced the CD8+ T cell response by inhibiting IDO1 expression. The results provide a theoretical basis for the development of new immunotherapy for the treatment of colon cancer.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , MicroRNAs/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Células HT29 , Xenoenxertos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , TransfecçãoRESUMO
Emerging evidence indicates that aberrant long non-coding RNA (lncRNA) expression contributes to CRC pathogenesis. To explore the biological functions of lncRNAs in CRC and to identify the underlying mechanisms, we first conducted a lncRNA microarray assay to investigate lncRNA expression patterns in CRC. We identified a novel lncRNA OECC, originating from chromosome 8q24 that is highly expressed in CRC tissues and cell lines and has a positive correlation with liver metastasis. Attenuation of lncRNA OECC expression prohibited CRC cell proliferation, induced apoptosis, and inhibited migration. Furthermore, an inverse correlation between lncRNA OECC and miR-143-3p was observed. Bioinformatic analyses predicted, and a luciferase reporter assay demonstrated, that lncRNA OECC is a direct target of miR-143-3p, leading to down-regulation in the expression of its target genes, the NF-κB and p38 MAPK pathways. Taken together, our results suggest that lncRNA OECC is overexpressed in CRC and may play an oncogenic role through NF-κB and p38 MAPK pathway activation via miR-143-3p.
Assuntos
Neoplasias Colorretais/etiologia , MicroRNAs/fisiologia , RNA Longo não Codificante/fisiologia , Apoptose , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Biologia Computacional , Humanos , Neoplasias Hepáticas/secundário , NF-kappa B/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
PEAK1 is upregulated in multiple human malignancies and has been associated with tumor invasion and metastasis, but little is known about the role of PEAK1 in colorectal cancer (CRC) progression. We investigated the expression pattern, function and regulatory mechanisms of PEAK1 in CRC. Here, we found that PEAK1 is overexpressed in CRC tissues and that high PEAK1 expression predicts poor survival in colon cancer but not rectal cancer. Functionally, silencing PEAK1 inhibits cell proliferation, migration, and invasion in vitro and inhibits the growth of tumor xenografts in nude mice. Mechanistic studies revealed that PEAK1 is induced by epidermal growth factor receptor (EGFR) signaling and that PEAK1 is required for KRas-induced CRC cell growth and metastasis. Furthermore, we demonstrated that miR-181d directly targets PEAK1. Ectopic expression of miR-181d reduces the expression of PEAK1 and inhibits the growth and metastasis of CRC cells in vitro. Clinically, miR-181d is downregulated in CRC samples, and low miR-181d is correlated with poor patient survival. Our study demonstrates the importance of PEAK1 in CRC progression and suggests a potential mechanism by which increasing PEAK1 expression in CRC might be the result of EGFR/KRas signal activation and consequent miR-181d repression.
Assuntos
Neoplasias Colorretais/enzimologia , MicroRNAs/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Células CACO-2 , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de SinaisRESUMO
Reduced-gliotoxin is a small molecule derived from the secondary metabolites of marine fungi; compared to other gliotoxin analogues, it exhibits potent anticancer effects. However, the molecular basis of the death of colorectal cancer (CRC) cells induced by reduced-gliotoxin is unclear. Thus, the aim of this study was to investigate the potency of reduced-gliotoxin against CRC cells and to elucidate the underlying mechanisms. Cell morphology, flow cytometric analysis and western bolt analysis were performed to examine the functions and mechanisms of cell death induced by reduced-gliotoxin. Our findings demonstrated that reduced-gliotoxin triggered rapid cell detachment and induced anoikis in CRC cells. Mechanistically, our data indicated that the anoikis induced by reduced-gliotoxin was associated with the disruption of integrin-associated cell detachment and multiple signaling pathways. Furthermore, reduced-gliotoxin induced the excessive production of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP), resulting in the activation of both endogenous and exogenous apoptotic pathways and eventually, in the apoptosis of CRC cells. The blockage of ROS generation with N-acetylcysteine (NAC) attenuated the anoikis induced by reduced-gliotoxin. Taken together, these results suggest that reduced-gliotoxin may prove to be a potential candidate in the treatment of CRC.
Assuntos
Anoikis/efeitos dos fármacos , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Gliotoxina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/patologia , Gliotoxina/química , Gliotoxina/uso terapêutico , Células HCT116 , Células HT29 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Transdução de Sinais/efeitos dos fármacosRESUMO
In the past decades, various studies have suggested a possible link between thymidine phosphorylase (TP) level and colorectal cancer (CRC) treated with 5-fluorouracil (5-FU)-based chemotherapy; however, they have arrived at inconsistent results. Therefore, the present meta-analysis aimed to disclose a more comprehensive evaluation of this relationship. PubMed, the Cochrane Library, Ovid MEDLINE, Embase and China National Knowledge Infrastructure were systematically searched for studies that evaluated the prognostic value of TP in CRC. Stata 12.0 software was used to test the heterogeneity and evaluate the overall test performance. A total of 15 studies, including 1,225 patients, were included. The summary estimates of TP for CRC treated with 5-FU-based chemotherapy indicated a moderately positive prognosis with a hazard ratio (HR) of 0.76 (P=0.031) for overall survival and a HR of 0.711 (P=0.022) for relapse-free survival. On the basis of the present meta-analysis, TP could be promising and meaningful in the prognosis of CRC treated with 5-FU-based chemotherapy.
RESUMO
5-fluorouracil (5-FU)-based chemotherapy is the main chemotherapeutic approach for colorectal cancer (CRC) treatment. Because chemoresistance occurs frequently and significantly limits CRC therapies, a novel agent is needed. Pseudolaric acid B (PAB), a small molecule derived from the Chinese medicinal herb ''Tujinpi'', exhibits strong cytotoxic effects on a variety of cancers. However, the detailed mechanisms by which PAB inhibits CRC cell growth and its potential role in overcoming 5-FU resistance have not been well studied. In this study, we showed that PAB significantly inhibited the viability of various CRC cell lines but induced minor cytotoxicity in normal cells. Both the in vitro and in vivo results showed that PAB induced proliferation inhibition, mitotic arrest and subsequently caspase-dependent apoptosis in both 5-FU-sensitive and -resistant CRC cells. Moreover, PAB was shown to interfere with CRC cell mitotic spindle apparatus and activate the spindle assembly checkpoint. Finally, CDK1 activity was involved in PAB-induced mitotic arrest and apoptosis in CRC cells. Taken together, these data reveal that PAB induces CRC cell mitotic arrest followed by apoptosis and overcomes 5-FU resistance in vitro and in vivo, suggesting that PAB may be a potential agent for CRC treatment, particularly for 5-FU-resistant CRC.
Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Diterpenos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Mitose/efeitos dos fármacos , Animais , Proteína Quinase CDC2 , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Quinases Ciclina-Dependentes/metabolismo , Relação Dose-Resposta a Droga , Células HCT116 , Células HT29 , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Piperlongumine (PPLGM), an alkaloid isolated from the long pepper (Piper longum L.), can selectively trigger cancer cell death in colorectal cancer cells. The present study investigated whether the c-Jun NH2-terminal kinase (JNK) signaling pathway is involved in PPLGM-induced apoptosis in the human colorectal cancer HCT116 cell line. The results demonstrated that PPLGM reduced the cell viability and induced cell apoptosis in a time- and concentration-dependent manner, without a significant effect on cell cycle distribution. Meanwhile, treatment with 10 µM PPLGM resulted in JNK activation within 1 h, and a marked and sustained increase in c-Jun phosphorylation in the HCT116 cells. In addition, SP600125, a general inhibitor of JNK, inhibited PPLGM-induced apoptosis in the HCT116 cells by inhibiting PPLGM-induced c-Jun phosphorylation. Altogether, it can be concluded that the JNK signaling pathway, at least in part, is involved in PPLGM-mediated apoptosis in HCT116 cells.
RESUMO
The emergence of chemoresistance is a major limitation of colorectal cancer (CRC) therapies and novel biologically based therapies are urgently needed. Natural products represent a novel potential anticancer therapy. Gambogic acid (GA), a small molecule derived from Garcinia hanburyi Hook. f., has been demonstrated to be highly cytotoxic to several types of cancer cells and have low toxicity to the hematopoietic system. However, the potential role of GA in colorectal cancer and its ability to overcome the chemotherapeutic resistance in CRC cells have not been well studied. In the present study, we showed that GA directly inhibited proliferation and induced apoptosis in both 5-fluorouracil (5-FU) sensitive and 5-FU resistant colorectal cancer cells; induced apoptosis via activating JNK signaling pathway. The data, therefore, suggested an alternative strategy to overcome 5-FU resistance in CRC and that GA could be a promising medicinal compound for colorectal cancer therapy.
Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Xantonas/administração & dosagem , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/administração & dosagem , Humanos , Camundongos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Lymph node metastasis is an important factor determining the outcome of colorectal cancer. Although epithelial-to-mesenchymal transition (EMT), TNF-α and microRNA (miRNA) have been found to play important roles in lymph node metastasis, the underlying molecular mechanism remains unclear. Here we reported that high expression of microRNA-19a (miR-19a) was associated with lymph node metastasis and played an important role in TNF-α-induced EMT in colorectal cancer (CRC) cells. We analyzed miR-19a expression in surgical tissue specimens from 11 CRC patients and 275 formalin-fixed, paraffin-embedded CRC patients. We found that miR-19a was up-regulated in CRC tissues and high expression of miR-19a was significantly associated with lymph node metastasis. We further analyzed miR-19a lymph node metastasis signature in an external validation cohort of 311 CRC cases of the TCGA. MiR-19a was found to be significantly associated with lymph node metastasis in rectal cancer. In vitro, we showed that overexpression of miR-19a in human CRC cell lines promoted cell invasion and EMT. Furthermore, miR-19a was up-regulated by TNF-α and miR-19a was required for TNF-α-induced EMT and metastasis in CRC cells. Collectively, miR-19a played an important role in mediating EMT and metastatic behavior in CRC. It may serve as a potential marker of lymph node metastasis.
Assuntos
Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal , Linfonodos/metabolismo , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-IdadeRESUMO
Iron nanoparticles (Fe NPs) are often synthesized using sodium borohydride with aggregation, which is a high cost process and environmentally toxic. To address these issues, Fe NPs were synthesized using green methods based on tea extracts, including green, oolong and black teas. The best method for degrading malachite green (MG) was Fe NPs synthesized by green tea extracts because it contains a high concentration of caffeine/polyphenols which act as both reducing and capping agents in the synthesis of Fe NPs. These characteristics were confirmed by a scanning electron microscope (SEM), UV-visible (UV-vis) and specific surface area (BET). To understand the formation of Fe NPs using various tea extracts, the synthesized Fe NPs were characterized by SEM, X-ray energy-dispersive spectrometer (EDS), and X-ray diffraction (XRD). What emerged were different sizes and concentrations of Fe NPs being synthesized by tea extracts, leading to various degradations of MG. Furthermore, kinetics for the degradation of MG using these Fe NPs fitted well to the pseudo first-order reaction kinetics model with more than 20 kJ/mol activation energy, suggesting a chemically diffusion-controlled reaction. The degradation mechanism using these Fe NPs included adsorption of MG to Fe NPs, oxidation of iron, and cleaving the bond that was connected to the benzene ring.