Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Genes Dis ; 10(4): 1687-1701, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37397523

RESUMO

Ovarian cancer (OC) is one of the most lethal malignancies of the female reproductive system. OC patients are usually diagnosed at advanced stages due to the lack of early diagnosis. The standard treatment for OC includes a combination of debulking surgery and platinum-taxane chemotherapy, while several targeted therapies have recently been approved for maintenance treatment. The vast majority of OC patients relapse with chemoresistant tumors after an initial response. Thus, there is an unmet clinical need to develop new therapeutic agents to overcome the chemoresistance of OC. The anti-parasite agent niclosamide (NA) has been repurposed as an anti-cancer agent and exerts potent anti-cancer activities in human cancers including OC. Here, we investigated whether NA could be repurposed as a therapeutic agent to overcome cisplatin-resistant (CR) in human OC cells. To this end, we first established two CR lines SKOV3CR and OVCAR8CR that exhibit the essential biological characteristics of cisplatin resistance in human cancer. We showed that NA inhibited cell proliferation, suppressed cell migration, and induced cell apoptosis in both CR lines at a low micromole range. Mechanistically, NA inhibited multiple cancer-related pathways including AP1, ELK/SRF, HIF1, and TCF/LEF, in SKOV3CR and OVCAR8CR cells. NA was further shown to effectively inhibit xenograft tumor growth of SKOV3CR cells. Collectively, our findings strongly suggest that NA may be repurposed as an efficacious agent to combat cisplatin resistance in chemoresistant human OC, and further clinical trials are highly warranted.

2.
Medicine (Baltimore) ; 102(23): e33998, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37335657

RESUMO

Oral propranolol has not been shown to impact physical development, such as weight and height. The impact of children's intellectual development has received relatively little attention from researchers. The effects of propranolol on the growth and development of children with proliferative infantile hemangiomas during treatment were analyzed retrospectively. The children with infantile hemangioma treated with oral propranolol in the Department of Burn and Plastic Surgery, Fuzhou Children's Hospital of Fujian Province, from February 2017 to May 2022 were analyzed. A uniform therapeutic regimen was applied, including assessment, treatment, and follow-up. The assessment included physical development and intellectual development indices. The physical development indices were height and weight. Neuropsychological assessment uses developmental quotient (DQ) to assess intelligence development. The DQs on months 3, 6, and 9 posttreatment were compared to the pretreatment. Wilcoxon rank sum test of paired samples was used for height and weight. The developmental quotient was determined by paired t test. P < .05 indicated significant difference. A total of 51 patients were enrolled. All children completed the treatment successfully, without severe adverse drug reactions leading to treatment discontinuation. There was no significant difference in height and weight before and after treatment (P > .05). No significant difference was detected in DQ 3 months posttreatment and pretreatment (P = .19), while it decreased at 6 and 9 months posttreatment (P < .05). Oral propranolol does not have an impact on physical development (height and weight). No short-term effect was found on intellectual development, but a decrease was noted over 6 months, which needs to be investigated further.


Assuntos
Hemangioma Capilar , Hemangioma , Neoplasias Cutâneas , Humanos , Criança , Lactente , Propranolol/uso terapêutico , Estudos Retrospectivos , Hemangioma/tratamento farmacológico , Resultado do Tratamento , Administração Oral , Hemangioma Capilar/tratamento farmacológico , Crescimento e Desenvolvimento , Antagonistas Adrenérgicos beta/efeitos adversos , Neoplasias Cutâneas/tratamento farmacológico
4.
Artigo em Inglês | MEDLINE | ID: mdl-36874406

RESUMO

Introduction: Diabetes is a chronic inflammatory state, and a key role of lncRNAs in diabetes complications is a new area of research. Methods: In this study, key lncRNAs related to diabetes inflammation were identified by RNA-chip mining and lncRNA-mRNA coexpression network construction and finally verified by RT-qPCR. Results: We ultimately obtained 12 genes, including A1BG-AS1, AC084125.4, RAMP2-AS1, FTX, DBH-AS1, LOXL1-AS1, LINC00893, LINC00894, PVT1, RUSC1-AS1, HCG25, and ATP1B3-AS1. RT-qPCR assays verified that LOXL1-AS1, A1BG-AS1, FTX, PVT1, and HCG25 were upregulated in the HG+LPS-induced THP-1 cells, and LINC00893, LINC00894, RUSC1-AS1, DBH-AS1, and RAMP2-AS1 were downregulated in the HG+LPS-induced THP-1 cells. Conclusions: lncRNAs and mRNAs are extensively linked and form a coexpression network, and lncRNAs may influence the development of type 2 diabetes by regulating the corresponding mRNAs. The ten key genes obtained may become biomarkers of inflammation in type 2 diabetes in the future.


Assuntos
Diabetes Mellitus Tipo 2 , RNA Longo não Codificante , Humanos , RNA Mensageiro , Lipopolissacarídeos , Biologia Computacional , Inflamação , ATPase Trocadora de Sódio-Potássio
5.
Crit Rev Food Sci Nutr ; 63(15): 2407-2425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34494479

RESUMO

Food allergy is a serious health problem affecting more than 10% of the human population worldwide. Medical treatments for food allergy remain limited because immune therapy is risky and costly, and anti-allergic drugs have many harmful side effects and can cause drug dependence. In this paper, we review natural bioactive substances capable of alleviating food allergy. The sources of the anti-allergic substances reviewed include plants, animals, and microbes, and the types of substances include polysaccharides, oligosaccharides, polyphenols, phycocyanin, polyunsaturated fatty acids, flavonoids, terpenoids, quinones, alkaloids, phenylpropanoids, and probiotics. We describe five mechanisms involved in anti-allergic activities, including binding with epitopes located in allergens, affecting the gut microbiota, influencing intestinal epithelial cells, altering antigen presentation and T cell differentiation, and inhibiting the degranulation of effector cells. In the discussion, we present the limitations of existing researches as well as promising advances in the development of anti-allergic foods and/or immunomodulating food ingredients that can effectively prevent or alleviate food allergy. This review provides a reference for further research on anti-allergic materials and their hyposensitizing mechanisms.


Assuntos
Antialérgicos , Hipersensibilidade Alimentar , Probióticos , Animais , Humanos , Hipersensibilidade Alimentar/tratamento farmacológico , Alérgenos , Antialérgicos/farmacologia , Antialérgicos/uso terapêutico , Flavonoides/farmacologia
6.
Genes Dis ; 9(2): 347-357, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35224151

RESUMO

The treatment of cancer mainly involves surgical excision supplemented by radiotherapy and chemotherapy. Chemotherapy drugs act by interfering with tumor growth and inducing the death of cancer cells. Anti-tumor drugs were developed to induce apoptosis, but some patient's show apoptosis escape and chemotherapy resistance. Therefore, other forms of cell death that can overcome the resistance of tumor cells are important in the context of cancer treatment. Ferroptosis is a newly discovered iron-dependent, non-apoptotic type of cell death that is highly negatively correlated with cancer development. Ferroptosis is mainly caused by the abnormal increase in iron-dependent lipid reactive oxygen species and the imbalance of redox homeostasis. This review summarizes the progression and regulatory mechanism of ferroptosis in cancer and discusses its possible clinical applications in cancer diagnosis and treatment.

7.
J Obstet Gynaecol ; 42(3): 514-517, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34169784

RESUMO

Radical hysterectomy (RH) may cause lower urinary tract symptoms (LUTS) for patients with cervical cancer. Few data are available on the long-term LUTS of these patients and whether the symptoms relate to the route of surgery remain unclear. Here, we assessed the long-term urinary dysfunction in cervical cancer patients after RH based on a self-reported questionnaire. A total of 168 patients after type C2 RH, either by laparoscopy (LRH) or laparotomy (ARH), were analysed. The median length of follow-up was 54 ± 8.35 months. The total incidence of urinary dysfunction was around 40%. Patients with LRH had more intermittent stream and feeling of incomplete emptying than those in ARH group. Our data indicate the irreversible damage of RH to urinary function of cervical cancer patients, who should be informed of the long-term and high incidence of urinary dysfunction after RH when they choose surgical treatment.Impact StatementWhat is already known on this subject? Radical hysterectomy (RH) with pelvic lymphadenectomy is standard surgical care for patients with cervical cancer. RH could induce urinary dysfunction, including bladder sensation loss, hypertonic and hypotonic bladder, urinary incontinence, etc. Studies mainly focus on short- or mid-term urinary dysfunction and stated that spontaneous recovery of urinary function is to be expected within 6-12 months after surgery.What the results of this study add? The lower urinary tract symptoms last for years after type C2 RH, indicating the irreversible damage of RH to urinary function of cervical cancer patients. The incidence of bladder dysfunction is increased in patients submitted to laparoscopic RH compared to abdominal RH.What the implications are of these findings for clinical practice and/or further research? Cervical cancer patients should be informed of the long-term and high incidence of urinary dysfunction after RH when they choose surgical treatment.


Assuntos
Laparoscopia , Neoplasias do Colo do Útero , Feminino , Humanos , Histerectomia/efeitos adversos , Histerectomia/métodos , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Excisão de Linfonodo/métodos , Estadiamento de Neoplasias , Estudos Retrospectivos , Neoplasias do Colo do Útero/patologia
8.
Genes Dis ; 8(6): 814-826, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34522710

RESUMO

Intestinal cancers are developed from intestinal epithelial stem cells (ISCs) in intestinal crypts through a multi-step process involved in genetic mutations of oncogenes and tumor suppressor genes. ISCs play a key role in maintaining the homeostasis of gut epithelium. In 2009, Sato et al established a three-dimensional culture system, which mimicked the niche microenvironment by employing the niche factors, and successfully grew crypt ISCs into organoids or Mini-guts in vitro. Since then, the intestinal organoid technology has been used to delineate cellular signaling in ISC biology. However, the cultured organoids consist of heterogeneous cell populations, and it was technically challenging to introduce genomic changes into three-dimensional organoids. Thus, there was a technical necessity to develop a two-dimensional ISC culture system for effective genomic manipulations. In this study, we established a conditionally immortalized mouse intestinal crypt (ciMIC) cell line by using a piggyBac transposon-based SV40 T antigen expression system. We showed that the ciMICs maintained long-term proliferative activity under two-dimensional niche factor-containing culture condition, retained the biological characteristics of intestinal epithelial stem cells, and could form intestinal organoids in three-dimensional culture. While in vivo cell implantation tests indicated that the ciMICs were non-tumorigenic, the ciMICs overexpressing oncogenic ß-catenin and/or KRAS exhibited high proliferative activity and developed intestinal adenoma-like pathological features in vivo. Collectively, these findings strongly suggested that the engineered ciMICs should be used as a valuable tool cell line to dissect the genetic and/or epigenetic underpinnings of intestinal tumorigenesis.

9.
Aging (Albany NY) ; 13(13): 17407-17427, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232919

RESUMO

Ovarian cancer is the third most common cancer and the second most common cause of gynecologic cancer death in women. Its routine clinical management includes surgical resection and systemic therapy with chemotherapeutics. While the first-line systemic therapy requires the combined use of platinum-based agents and paclitaxel, many ovarian cancer patients have recurrence and eventually succumb to chemoresistance. Thus, it is imperative to develop new strategies to overcome recurrence and chemoresistance of ovarian cancer. Repurposing previously-approved drugs is a cost-effective strategy for cancer drug discovery. The antiparasitic drug mebendazole (MBZ) is one of the most promising drugs with repurposing potential. Here, we investigate whether MBZ can overcome cisplatin resistance and sensitize chemoresistant ovarian cancer cells to cisplatin. We first established and characterized two stable and robust cisplatin-resistant (CR) human ovarian cancer lines and demonstrated that MBZ markedly inhibited cell proliferation, suppressed cell wounding healing/migration, and induced apoptosis in both parental and CR cells at low micromole range. Mechanistically, MBZ was revealed to inhibit multiple cancer-related signal pathways including ELK/SRF, NFKB, MYC/MAX, and E2F/DP1 in cisplatin-resistant ovarian cancer cells. We further showed that MBZ synergized with cisplatin to suppress cell proliferation, induce cell apoptosis, and blunt tumor growth in xenograft tumor model of human cisplatin-resistant ovarian cancer cells. Collectively, our findings suggest that MBZ may be repurposed as a synergistic sensitizer of cisplatin in treating chemoresistant human ovarian cancer, which warrants further clinical studies.


Assuntos
Antinematódeos/farmacologia , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mebendazol/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Cisplatino/uso terapêutico , Reposicionamento de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaio Tumoral de Célula-Tronco , Cicatrização , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Front Bioeng Biotechnol ; 9: 603444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842441

RESUMO

Cartilage, especially articular cartilage, is a unique connective tissue consisting of chondrocytes and cartilage matrix that covers the surface of joints. It plays a critical role in maintaining joint durability and mobility by providing nearly frictionless articulation for mechanical load transmission between joints. Damage to the articular cartilage frequently results from sport-related injuries, systemic diseases, degeneration, trauma, or tumors. Failure to treat impaired cartilage may lead to osteoarthritis, affecting more than 25% of the adult population globally. Articular cartilage has a very low intrinsic self-repair capacity due to the limited proliferative ability of adult chondrocytes, lack of vascularization and innervation, slow matrix turnover, and low supply of progenitor cells. Furthermore, articular chondrocytes are encapsulated in low-nutrient, low-oxygen environment. While cartilage restoration techniques such as osteochondral transplantation, autologous chondrocyte implantation (ACI), and microfracture have been used to repair certain cartilage defects, the clinical outcomes are often mixed and undesirable. Cartilage tissue engineering (CTE) may hold promise to facilitate cartilage repair. Ideally, the prerequisites for successful CTE should include the use of effective chondrogenic factors, an ample supply of chondrogenic progenitors, and the employment of cell-friendly, biocompatible scaffold materials. Significant progress has been made on the above three fronts in past decade, which has been further facilitated by the advent of 3D bio-printing. In this review, we briefly discuss potential sources of chondrogenic progenitors. We then primarily focus on currently available chondrocyte-friendly scaffold materials, along with 3D bioprinting techniques, for their potential roles in effective CTE. It is hoped that this review will serve as a primer to bring cartilage biologists, synthetic chemists, biomechanical engineers, and 3D-bioprinting technologists together to expedite CTE process for eventual clinical applications.

11.
Genes Dis ; 8(1): 8-24, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33569510

RESUMO

Notch is a cell-cell signaling pathway that is involved in a host of activities including development, oncogenesis, skeletal homeostasis, and much more. More specifically, recent research has demonstrated the importance of Notch signaling in osteogenic differentiation, bone healing, and in the development of the skeleton. The craniofacial skeleton is complex and understanding its development has remained an important focus in biology. In this review we briefly summarize what recent research has revealed about Notch signaling and the current understanding of how the skeleton, skull, and face develop. We then discuss the crucial role that Notch plays in both craniofacial development and the skeletal system, and what importance it may play in the future.

12.
Am J Transl Res ; 13(12): 13683-13696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35035707

RESUMO

OBJECTIVES: Acute myeloid leukemia (AML) is caused by multiple genetic alterations in hematopoietic progenitors, and molecular genetic analyses have provided useful information for AML diagnosis and prognostication. This study aimed to integratively understand the prognostic value of specific copy number variation (CNV) patterns and CNV-modulated gene expression in AML. METHODS: We conducted integrative CNV profiling and gene expression analysis using data from the Therapeutically Applicable Research To Generate Effective Treatments (TARGET) and The Cancer Genome Atlas (TCGA) AML cohorts. CNV-related genes associated with survival were identified using the TARGET AML cohort and validated using the TCGA AML cohort. Genes whose CNV-modulated expression was associated with survival were also identified using the TARGET AML cohort and validated using the TCGA AML cohort, and patient bone marrow samples were then used to further validate the effects of CNV-modulated gene expression on survival. CNV and mRNA survival analyses were conducted using proportional hazards regression models (Cox regression) and the "survminer" and "survival" packages of the R Project for Statistical Computing. Genes belonging to the Kyoto Encyclopedia of Genes and Genomes (KEGG) cancer panel were extracted from KEGG cancer-related pathways. RESULTS: One hundred two CNV-related genes (located at 7q31-34, 16q24) associated with patient survival were identified using the TARGET cohort and validated with the TCGA AML cohort. Among these 102 validated genes, three miRNA genes (MIR29A, MIR183, and MIR335) were included in the KEGG cancer panel. Five genes (SEMA4D, CBFB, CHAF1B, SAE1, and DNMT1) whose expression was modulated by CNVs and significantly associated with clinical outcomes were identified, and the deletion of SEMA4D and CBFB was found to potentially exert protective effects against AML. The results of these five genes were also validated using patient marrow samples. Additionally, the distribution of CNVs affecting these five CNV-modulated genes was independent of the risk group (favorable-, intermediate-, and adverse-risk groups). CONCLUSIONS: Overall, this study identified 102 CNV-related genes associated with patient survival and identified five genes whose expression was modulated by CNVs and associated with patient survival. Our findings are crucial for the development of new modes of prognosis evaluation and targeted therapy for AML.

13.
Front Bioeng Biotechnol ; 8: 598607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381499

RESUMO

Bone is a dynamic organ with high regenerative potential and provides essential biological functions in the body, such as providing body mobility and protection of internal organs, regulating hematopoietic cell homeostasis, and serving as important mineral reservoir. Bone defects, which can be caused by trauma, cancer and bone disorders, pose formidable public health burdens. Even though autologous bone grafts, allografts, or xenografts have been used clinically, repairing large bone defects remains as a significant clinical challenge. Bone tissue engineering (BTE) emerged as a promising solution to overcome the limitations of autografts and allografts. Ideal bone tissue engineering is to induce bone regeneration through the synergistic integration of biomaterial scaffolds, bone progenitor cells, and bone-forming factors. Successful stem cell-based BTE requires a combination of abundant mesenchymal progenitors with osteogenic potential, suitable biofactors to drive osteogenic differentiation, and cell-friendly scaffold biomaterials. Thus, the crux of BTE lies within the use of cell-friendly biomaterials as scaffolds to overcome extensive bone defects. In this review, we focus on the biocompatibility and cell-friendly features of commonly used scaffold materials, including inorganic compound-based ceramics, natural polymers, synthetic polymers, decellularized extracellular matrix, and in many cases, composite scaffolds using the above existing biomaterials. It is conceivable that combinations of bioactive materials, progenitor cells, growth factors, functionalization techniques, and biomimetic scaffold designs, along with 3D bioprinting technology, will unleash a new era of complex BTE scaffolds tailored to patient-specific applications.

14.
Am J Cancer Res ; 10(10): 3248-3266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163268

RESUMO

Primary bone tumor, also known as osteosarcoma (OS), is the most common primary malignancy of bone in children and young adults. Current treatment protocols yield a 5-year survival rate of near 70% although approximately 80% of patients have metastatic disease at the time of diagnosis. However, long-term survival rates have remained virtually unchanged for nearly four decades, largely due to our limited understanding of the disease process. One major signaling pathway that has been implicated in human OS tumorigenesis is the insulin-like growth factor (IGF)/insulin-like growth factor-1 receptor (IGF1R) signaling axis. IGF1R is a heterotetrameric α2ß2 receptor, in which the α subunits comprise the ligand binding site, whereas the ß subunits are transmembrane proteins containing intracellular tyrosine kinase domains. Although numerous strategies have been devised to target IGF/IGF1R axis, most of them have failed in clinical trials due to the lack of specificity and/or limited efficacy. Here, we investigated whether a more effective and specific blockade of IGF1R activity in human OS cells can be accomplished by employing dominant-negative IGF1R (dnIGF1R) mutants. We engineered the recombinant adenoviruses expressing two IGF1R mutants derived from the α (aa 1-524) and ß (aa 741-936) subunits, and found that either dnIGF1Rα and/or dnIGF1Rß effectively inhibited cell migration, colony formation, and cell cycle progression of human OS cells, which could be reversed by exogenous IGF1. Furthermore, dnIGF1Rα and/or dnIGF1Rß inhibited OS xenograft tumor growth in vivo, with the greatest inhibition of tumor growth shown by dnIGF1Rα. Mechanistically, the dnIGF1R mutants down-regulated the expression of PI3K/AKT and RAS/RAF/MAPK, BCL2, Cyclin D1 and most EMT regulators, while up-regulating pro-apoptotic genes in human OS cells. Collectively, these findings strongly suggest that the dnIGF1R mutants, especially dnIGF1Rα, may be further developed as novel anticancer agents that target IGF signaling axis with high specificity and efficacy.

15.
Stem Cells Dev ; 29(8): 498-510, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32041483

RESUMO

Mesenchymal stem cells (MSCs) are multipotent progenitors that have the ability to differentiate into multiple lineages, including bone, cartilage, and fat. We previously demonstrated that the least known bone morphogenetic protein (BMP)9 (also known as growth differentiation factor 2) is one of the potent osteogenic factors that can induce both osteogenic and adipogenic differentiation of MSCs. Nonetheless, the molecular mechanism underlying BMP9 action remains to be fully understood. Leptin is an adipocyte-derived hormone in direct proportion to the amount of body fat, and exerts pleiotropic functions, such as regulating energy metabolism, bone mass, and mineral density. In this study, we investigate the potential effect of leptin signaling on BMP9-induced osteogenic differentiation of MSCs. We found that exogenous leptin potentiated BMP9-induced osteogenic differentiation of MSCs both in vitro and in vivo, while inhibiting BMP9-induced adipogenic differentiation. BMP9 was shown to induce the expression of leptin and leptin receptor in MSCs, while exogenous leptin upregulated BMP9 expression in less differentiated MSCs. Mechanistically, we demonstrated that a blockade of JAK signaling effectively blunted leptin-potentiated osteogenic differentiation induced by BMP9. Taken together, our results strongly suggest that leptin may potentiate BMP9-induced osteogenesis by cross-regulating BMP9 signaling through the JAK/STAT signaling pathway in MSCs. Thus, it is conceivable that a combined use of BMP9 and leptin may be explored as a novel approach to enhancing efficacious bone regeneration and fracture healing.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator 2 de Diferenciação de Crescimento/metabolismo , Janus Quinases/metabolismo , Leptina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
16.
Int J Biol Macromol ; 149: 639-650, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31991207

RESUMO

Previous studies have shown that crude polysaccharides from the Lycium barbarum fruit could inhibit cancer cell growth, but the major effective constituents are yet to be identified. In this study, we compared the effects of L. barbarum fruit polysaccharide fractions on the growth of hepatoma cells (SMMC-7721 and HepG2), cervical cancer cells (HeLa), gastric carcinoma cells (SGC-7901), and human breast cancer cells (MCF-7). LBGP-I-3 showed stronger inhibitory effects on MCF-7 cells (cell viability of 48.96%) than SMMC-7721 (cell viability of 78.91%) and HeLa cells (cell viability of 55.94%), and had no effect on HepG2 and SGC-7901 cells. In addition, LBGP-I-3 had no inhibitory effect on normal liver cells (L02, cell viability of 115.58%). Investigation of the underlying mechanism suggested that LBGP-I-3 inhibited the growth of cancer cells by cell cycle arrest and apoptosis. LBGP-I-3 arrested the cell cycle at the G0/G1 phase, altered mitochondrial function, activated oxidative stress, and regulated the MAPK signaling pathway to induce apoptosis. Thus, LBGP-I-3 may be a potential functional food ingredient for the prevention of cancer without toxicity to normal cells in vitro. These results could help further elucidate the structure-activity relationship of L. barbarum fruit polysaccharides and functional food development.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Frutas/química , Galactanos/química , Galactanos/farmacologia , Lycium/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , China , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Células HeLa/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Humanos , Fígado , Fitoterapia , Polissacarídeos/química , Polissacarídeos/farmacologia , Neoplasias Gástricas , Neoplasias do Colo do Útero
17.
Int J Biol Macromol ; 152: 1047-1055, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751707

RESUMO

Biological functions of chondroitin sulfate, including anti-oxidation and anti-inflammation, are associated with its molecular weight. This study aimed to evaluate the correlation between antioxidant activity and molecular weights of chondroitin sulfate derived from bovine nasal cartilage (BCS). BCS extracted by compound enzymatic method was further purified via DEAE-cellulose column separation to obtain BCS-II (129.4 kDa), which was further degraded by H2O2-Vc to obtain four subfractions: BCS-II-1 (92.7 kDa), BCS-II-2 (54.1 kDa), BCS-II-3 (26.3 kDa), and BCS-II-4 (19.7 kDa). Changes in the physicochemical properties of BCS-II before and after degradation were compared via FT-IR, NMR and monosaccharide composition analysis. Finally, antioxidant activities of BCS-II and its subfractions BCS-II-1-4 were compared. Our results showed that the H2O2-Vc system did not disrupt the primary functional group of BCS-II, with no significant change in sulfate content between BCS-II and its degraded fractions; however, uronic acid levels increased in degraded fractions when compared with BCS-II. In vitro, BCS-II-4 displayed the lowest molecular weight and had the strongest antioxidant activity. Therefore, the antioxidant activity of chondroitin sulfate in vitro is robustly associated with its molecular weight, and low-molecular-weight chondroitin sulfate can be used as an antioxidant in the food and pharmaceutical industries and other sectors.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Sulfatos de Condroitina/química , Cartilagens Nasais/química , Animais , Bovinos , Peróxido de Hidrogênio/química , Peso Molecular , Nariz/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ácidos Urônicos/química
18.
Am J Transl Res ; 12(12): 8084-8098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33437383

RESUMO

Ovarian cancer is one of the most common cancers in women and the second most common cause of gynecologic cancer death in women worldwide. While ovarian cancer is highly heterogeneous in histological subtypes and molecular genetic makeup, epithelial ovarian cancer is the most common subtype. The clinical outcomes of ovarian cancer largely depend on early detection and access to appropriate surgery and systemic therapy. While combination therapy with platinum-based drugs and paclitaxel (PTX) remains the first-line systemic therapy for ovarian cancer, many patients experience recurrence and die of progressive chemoresistance. Thus, there is an unmet clinical need to overcome recurrent disease due to resistance to chemotherapies of ovarian cancer. Here, we investigated whether BRAF inhibitors (BRAFi) could sensitize PTX-resistant ovarian cancer cells to PTX, and thus would overcome the resistance to chemotherapies. We found that BRAF and several members of the RAS/MAPK pathways were upregulated upon PTX treatment in ovarian cancer cells, and that BRAF expression was significantly elevated in the PTX-resistant ovarian cancer cells. While the BRAFi vemurafenib (VEM) alone did not cause any significant cytotoxicity in PTX-resistant ovarian cancer cells, VEM significantly enhanced PTX-induced growth inhibition and apoptosis in a dose-dependent manner. Furthermore, VEM and PTX were shown to synergistically inhibit tumor growth and cell proliferation of PTX-resistant human ovarian cancer cells in vivo. Collectively, these findings strongly suggest that BRAFi may be exploited as synergistic sensitizers of paclitaxel in treating chemoresistant ovarian cancer.

19.
Anal Biochem ; 582: 113355, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276651

RESUMO

Quantitative analysis of glycosphingolipids (GSLs) has been hindered by the lack of chromogenic groups for spectral detection or active functional groups for specific derivatization. In this study, a highly sensitive method based on ozonolysis-induced release and isotopic Girard's reagent P labeling of GSL glycans coupled with mass spectrometric detection for the quantification of animal tissue GSLs is developed. First, different approaches for the release of glycans from GSLs were compared with each other and the ozonolysis-based method was found to have the highest glycan yield under relative mild reaction conditions. Then a relative quantification method of ozonolysis-released GSL glycans based on stable isotope labeling using nondeuterated (d0-) and 2,3,4,5,6-pentadeuterated (d5-) Girard's reagent P (GP) was established, and its good linearity, accuracy and reproducibility were statistically verified. Finally, the new method was successfully applied to revealing the difference between porcine brain and liver as well as between the brain of normal and aging rats in GSL glycome by online hydrophilic interaction liquid chromatography coupling with ultraviolet detection and tandem mass spectrometry (HILIC-UV-MS/MS). This novel method is versatile and sensitive, enabling accurate quantitative analysis of tissue GSLs and showing great significance for glycomic studies.


Assuntos
Betaína/análogos & derivados , Química Encefálica , Glicoesfingolipídeos/análise , Fígado/química , Polissacarídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Betaína/química , Encéfalo/metabolismo , Marcação por Isótopo/métodos , Fígado/metabolismo , Ratos , Ratos Sprague-Dawley , Suínos
20.
J Agric Food Chem ; 67(32): 8958-8966, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31334644

RESUMO

The functional role of human milk oligosaccharides (HMOs) is closely associated with their type, composition, and structure. However, a detailed analysis of HMOs is difficult because neutral oligosaccharides (NHMOs) are mixed with sialylated oligosaccharides (SHMOs) in milk. Here, NHMOs were separated from SHMOs by DEAE-52 anion chromatography, and lactose was removed by graphite carbon solid-phase extraction. Lactose-free NHMOs were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) based on Girard's reagent P on-target derivatization (GPOD), and SHMOs were analyzed by MALDI-TOF-MS following selective sialic acid derivatization and GPOD. Sixty-four oligosaccharides were detected: 36 NHMOs, of which 28 were fucosylated, and 28 SHMOs, of which 8 with α-2,3-linked monosialic acid, 2 with α-2,3-linked disialic acid, 10 with α-2,6-linked monosialic acid, 2 with α-2,6-linked disialic acid, and 5 with both α-2,3- and α-2,6-linked disialic acid. These findings provide the groundwork for further characterization of the structure and activity of HMOs.


Assuntos
Betaína/análogos & derivados , Leite Humano/química , Oligossacarídeos/química , Betaína/química , Feminino , Humanos , Ácido N-Acetilneuramínico/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA