Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
1.
Comput Methods Programs Biomed ; 251: 108199, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38728830

RESUMO

BACKGROUND AND OBJECTIVES: In cervical cell diagnostics, autonomous screening technology constitutes the foundation of automated diagnostic systems. Currently, numerous deep learning-based classification techniques have been successfully implemented in the analysis of cervical cell images, yielding favorable outcomes. Nevertheless, efficient discrimination of cervical cells continues to be challenging due to large intra-class and small inter-class variations. The key to dealing with this problem is to capture localized informative differences from cervical cell images and to represent discriminative features efficiently. Existing methods neglect the importance of global morphological information, resulting in inadequate feature representation capability. METHODS: To address this limitation, we propose a novel cervical cell classification model that focuses on purified fusion information. Specifically, we first integrate the detailed texture information and morphological structure features, named cervical pathology information fusion. Second, in order to enhance the discrimination of cervical cell features and address the data redundancy and bias inherent after fusion, we design a cervical purification bottleneck module. This model strikes a balance between leveraging purified features and facilitating high-efficiency discrimination. Furthermore, we intend to unveil a more intricate cervical cell dataset: Cervical Cytopathology Image Dataset (CCID). RESULTS: Extensive experiments on two real-world datasets show that our proposed model outperforms state-of-the-art cervical cell classification models. CONCLUSIONS: The results show that our method can well help pathologists to accurately evaluate cervical smears.

2.
Front Pharmacol ; 15: 1374485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741593

RESUMO

Background: Fufang Xiaohuoluo pill (FFXHL) is a commonly used prescription in clinical practice for treating rheumatoid arthritis in China, yet its specific mechanism remains unclear. This study aims to elucidate the pharmacological mechanisms of FFXHL using both in vivo and in vitro experiments. Methods: The collagen-induced arthritis (CIA) rat model was established to evaluate FFXHL's therapeutic impact. Parameters that include paw swelling, arthritis scores, and inflammatory markers were examined to assess the anti-inflammatory and analgesic effects of FFXHL. Human fibroblast-like synoviocytes (MH7A cells) is activated by tumour necrosis factor-alpha (TNF-α) were used to explore the anti-inflammatory mechanism on FFXHL. Results: Our findings indicate that FFXHL effectively reduced paw swelling, joint pain, arthritis scores, and synovial pannus hyperplasia. It also lowered serum levels of TNF-α, interleukin-1ß (IL1ß), and interleukin-6 (IL-6). Immunohistochemical analysis revealed decreased expression of nuclear factor-kappa B (NF-κB) p65 in FFXHL-treated CIA rat joints. In vitro experiments demonstrated FFXHL's ability to decrease protein secretion of IL-1ß and IL-6, suppress mRNA expression of matrix metalloproteinases (MMP) -3, -9, and -13, reduce reactive oxygen species (ROS) levels, and inhibit NF-κB p65 translocation in TNF-α stimulated MH7A cells. FFXHL also suppressed protein levels of extracellular signal-regulated kinase (ERK), c-Jun Nterminal kinase (JNK), p38 MAP kinase (p38), protein kinase B (Akt), p65, inhibitor of kappa B kinase α/ß (IKKα/ß), Toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) induced by TNF-α in MH7A cells. Conclusion: The findings imply that FFXHL exhibits significant anti-inflammatory and antiarthritic effects in both CIA rat models and TNF-α-induced MH7A cells. The potential mechanism involves the inactivation of TLR4/MyD88, mitogen-activated protein kinases (MAPKs), NF-κB, and Akt pathways by FFXHL.

3.
BMC Med ; 22(1): 200, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755647

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common primary malignant bone tumor and is highly prone to metastasis. OS can metastasize to the lymph node (LN) through the lymphatics, and the metastasis of tumor cells reestablishes the immune landscape of the LN, which is conducive to the growth of tumor cells. However, the mechanism of LN metastasis of osteosarcoma and remodeling of the metastatic lymph node (MLN) microenvironment is not clear. METHODS: Single-cell RNA sequencing of 18 samples from paracancerous, primary tumor, and lymph nodes was performed. Then, new signaling axes closely related to metastasis were identified using bioinformatics, in vitro experiments, and immunohistochemistry. The mechanism of remodeling of the LN microenvironment in tumor cells was investigated by integrating single-cell and spatial transcriptomics. RESULTS: From 18 single-cell sequencing samples, we obtained 117,964 cells. The pseudotime analysis revealed that osteoblast(OB) cells may follow a differentiation path from paracancerous tissue (PC) → primary tumor (PT) → MLN or from PC → PT, during the process of LN metastasis. Next, in combination of bioinformatics, in vitro and in vivo experiments, and immunohistochemistry, we determined that ETS2/IBSP, a new signal axis, might promote LN metastasis. Finally, single-cell and spatial dissection uncovered that OS cells could reshape the microenvironment of LN by interacting with various cell components, such as myeloid, cancer-associated fibroblasts (CAFs), and NK/T cells. CONCLUSIONS: Collectively, our research revealed a new molecular mechanism of LN metastasis and clarified how OS cells influenced the LN microenvironment, which might provide new insight for blocking LN metastasis.


Assuntos
Neoplasias Ósseas , Linfonodos , Metástase Linfática , Osteossarcoma , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Osteossarcoma/patologia , Osteossarcoma/genética , Humanos , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Linfonodos/patologia , Metástase Linfática/patologia , Animais , Camundongos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica
4.
Front Pharmacol ; 15: 1390615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698811

RESUMO

Background: Previous studies have shown that MCM3 plays a key role in initiating DNA replication. However, the mechanism of MCM3 function in most cancers is still unknown. The aim of our study was to explore the expression, prognostic role, and immunological characteristics of MCM3 across cancers. Methods: We explored the expression pattern of MCM3 across cancers. We subsequently explored the prognostic value of MCM3 expression by using univariate Cox regression analysis. Spearman correlation analysis was performed to determine the correlations between MCM3 and immune-related characteristics, mismatching repair (MMR) signatures, RNA modulator genes, cancer stemness, programmed cell death (PCD) gene expression, tumour mutation burden (TMB), microsatellite instability (MSI), and neoantigen levels. The role of MCM3 in predicting the response to immune checkpoint blockade (ICB) therapy was further evaluated in four immunotherapy cohorts. Single-cell data from CancerSEA were analysed to assess the biological functions associated with MCM3 in 14 cancers. The clinical correlation and independent prognostic significance of MCM3 were further analysed in the TCGA and CGGA lower-grade glioma (LGG) cohorts, and a prognostic nomogram was constructed. Immunohistochemistry in a clinical cohort was utilized to validate the prognostic utility of MCM3 expression in LGG. Results: MCM3 expression was upregulated in most tumours and strongly associated with patient outcomes in many cancers. Correlation analyses demonstrated that MCM3 expression was closely linked to immune cell infiltration, immune checkpoints, MMR genes, RNA modulator genes, cancer stemness, PCD genes and the TMB in most tumours. There was an obvious difference in outcomes between patients with high MCM3 expression and those with low MCM3 expression in the 4 ICB treatment cohorts. Single-cell analysis indicated that MCM3 was mainly linked to the cell cycle, DNA damage and DNA repair. The expression of MCM3 was associated with the clinical features of LGG patients and was an independent prognostic indicator. Finally, the prognostic significance of MCM3 in LGG was validated in a clinical cohort. Conclusion: Our study suggested that MCM3 can be used as a potential prognostic marker for cancers and may be associated with tumour immunity. In addition, MCM3 is a promising predictor of immunotherapy responses.

5.
Front Immunol ; 15: 1382449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745657

RESUMO

Background: Acute Respiratory Distress Syndrome (ARDS) or its earlier stage Acute lung injury (ALI), is a worldwide health concern that jeopardizes human well-being. Currently, the treatment strategies to mitigate the incidence and mortality of ARDS are severely restricted. This limitation can be attributed, at least in part, to the substantial variations in immunity observed in individuals with this syndrome. Methods: Bulk and single cell RNA sequencing from ALI mice and single cell RNA sequencing from ARDS patients were analyzed. We utilized the Seurat program package in R and cellmarker 2.0 to cluster and annotate the data. The differential, enrichment, protein interaction, and cell-cell communication analysis were conducted. Results: The mice with ALI caused by pulmonary and extrapulmonary factors demonstrated differential expression including Clec4e, Retnlg, S100a9, Coro1a, and Lars2. We have determined that inflammatory factors have a greater significance in extrapulmonary ALI, while multiple pathways collaborate in the development of pulmonary ALI. Clustering analysis revealed significant heterogeneity in the relative abundance of immune cells in different ALI models. The autocrine action of neutrophils plays a crucial role in pulmonary ALI. Additionally, there was a significant increase in signaling intensity between B cells and M1 macrophages, NKT cells and M1 macrophages in extrapulmonary ALI. The CXCL, CSF3 and MIF, TGFß signaling pathways play a vital role in pulmonary and extrapulmonary ALI, respectively. Moreover, the analysis of human single-cell revealed DCs signaling to monocytes and neutrophils in COVID-19-associated ARDS is stronger compared to sepsis-related ARDS. In sepsis-related ARDS, CD8+ T and Th cells exhibit more prominent signaling to B-cell nucleated DCs. Meanwhile, both MIF and CXCL signaling pathways are specific to sepsis-related ARDS. Conclusion: This study has identified specific gene signatures and signaling pathways in animal models and human samples that facilitate the interaction between immune cells, which could be targeted therapeutically in ARDS patients of various etiologies.


Assuntos
Lesão Pulmonar Aguda , Comunicação Celular , Perfilação da Expressão Gênica , Animais , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Camundongos , Humanos , Comunicação Celular/imunologia , Transcriptoma , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/genética , Modelos Animais de Doenças , Análise de Célula Única , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , COVID-19/imunologia , COVID-19/genética , Transdução de Sinais , Masculino , Macrófagos/imunologia , Macrófagos/metabolismo
6.
Plant J ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558071

RESUMO

Verticillium wilt (VW) is a devasting disease affecting various plants, including upland cotton, a crucial fiber crop. Despite its impact, the genetic basis underlying cotton's susceptibility or defense against VW remains unclear. Here, we conducted a genome-wide association study on VW phenotyping in upland cotton and identified a locus on A13 that is significantly associated with VW resistance. We then identified a cystathionine ß-synthase domain gene at A13 locus, GhCBSX3A, which was induced by Verticillium dahliae. Functional analysis, including expression silencing in cotton and overexpression in Arabidopsis thaliana, confirmed that GhCBSX3A is a causal gene at the A13 locus, enhancing SAR-RBOHs-mediated apoplastic oxidative burst. We found allelic variation on the TATA-box of GhCBSX3A promoter attenuated its expression in upland cotton, thereby weakening VW resistance. Interestingly, we discovered that altered artificial selection of GhCBSX3A_R (an elite allele for VW) under different VW pressures during domestication and other improved processes allows specific human needs to be met. Our findings underscore the importance of GhCBSX3A in response to VW, and we propose a model for defense-associated genes being selected depending on the pathogen's pressure. The identified locus and gene serve as promising targets for VW resistance enhancement in cotton through genetic engineering.

7.
Adv Sci (Weinh) ; : e2306318, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629780

RESUMO

Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.

8.
Nat Commun ; 15(1): 3149, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605037

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo
9.
Clin Respir J ; 18(4): e13752, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606731

RESUMO

BACKGROUND: Lung Large cell neuroendocrine carcinoma (LCNEC) is a rare, aggressive, high-grade neuroendocrine carcinoma with a poor prognosis, mainly seen in elderly men. To date, we have found no studies on predictive models for LCNEC. METHODS: We extracted data from the Surveillance, Epidemiology, and End Results (SEER) database of confirmed LCNEC from 2010 to 2018. Univariate and multivariate Cox proportional risk regression analyses were used to identify independent risk factors, and then we constructed a novel nomogram and assessed the predictive effectiveness by receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). RESULTS: A total of 2546 patients with LCNEC were included, excluding those diagnosed with autopsy or death certificate, tumor, lymph node, metastasis (TNM) stage, tumor grade deficiency, etc., and finally, a total of 743 cases were included in the study. After univariate and multivariate analyses, we concluded that the independent risk factors were N stage, intrapulmonary metastasis, bone metastasis, brain metastasis, and surgical intervention. The results of ROC curves, calibration curves, and DCA in the training and validation groups confirmed that the nomogram could accurately predict the prognosis. CONCLUSIONS: The nomogram obtained from our study is expected to be a useful tool for personalized prognostic prediction of LCNEC patients, which may help in clinical decision-making.


Assuntos
Carcinoma Neuroendócrino , Neoplasias Pulmonares , Idoso , Masculino , Humanos , Prognóstico , Carcinoma Neuroendócrino/epidemiologia , Neoplasias Pulmonares/epidemiologia , Tomada de Decisão Clínica , Pulmão
10.
Mol Carcinog ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656551

RESUMO

Acetyl-CoAacyltransferase2 (ACAA2) is a key enzyme in the fatty acid oxidation pathway that catalyzes the final step of mitochondrial ß oxidation, which plays an important role in fatty acid metabolism. The expression of ACAA2 is closely related to the occurrence and malignant progression of tumors. However, the function of ACAA2 in ovarian cancer is unclear. The expression level and prognostic value of ACAA2 were analyzed by databases. Gain and loss of function were carried out to explore the function of ACAA2 in ovarian cancer. RNA-seq and bioinformatics methods were applied to illustrate the regulatory mechanism of ACAA2. ACAA2 overexpression promoted the growth, proliferation, migration, and invasion of ovarian cancer, and ACAA2 knockdown inhibited the malignant progression of ovarian cancer as well as the ability of subcutaneous tumor formation in nude mice. At the same time, we found that OGT can induce glycosylation modification of ACAA2 and regulate the karyoplasmic distribution of ACAA2. OGT plays a vital role in ovarian cancer as a function of oncogenes. In addition, through RNA-seq sequencing, we found that ACAA2 regulates the expression of DIXDC1. ACAA2 regulated the malignant progression of ovarian cancer through the WNT/ß-Catenin signaling pathway probably. ACAA2 is an oncogene in ovarian cancer and has the potential to be a target for ovarian cancer therapy.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38584556

RESUMO

BACKGROUND: Ultra-performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS) is widely used for concentration detection of many Tyrosine Kinase Inhibitors (TKIs), including afatinib, crizotinib, and osimertinib. In order to analyze whether pralsetinib takes effect in Rearranged during Transfection (RET)-positive patients with central nervous system metastasis, we aimed to develop a method for the detection of pralsetinib concentrations in human plasma and Cerebrospinal Fluid (CSF) by UPLC-MS/MS. METHODS: The method was developed using the external standard method, and method validation included precision, accuracy, stability, extraction recovery, and matrix effect. Working solutions were all obtained based on stock solutions of pralsetinib of 1mg/mL. The plasma/CSF samples were precipitated by acetonitrile for protein precipitation and then separated on an ACQUITY UPLC HSS T3 column (2.1×100 mm, 1.8 µm) with a gradient elution using 0.1% formic acid (solution A) and acetonitrile (solution B) as mobile phases at a flow rate of 0.4 mL/min. The tandem mass spectrometry was performed by a triple quadrupole linear ion trap mass spectrometry system (QTRAPTM 6500+) with an electrospray ion (ESI) source and Analyst 1.7.2 data acquisition system. Data were collected in Multiple Reaction Monitoring (MRM) and positive ionization mode. RESULTS: A good linear relationship of pralsetinib in both plasma and CSF was successfully established, and the calibration ranges were found to be 1.0-64.0 µg/mL and 50.0ng/mL-12.8 µg/mL for pralsetinib in the plasma and CSF, respectively. Validation was performed, including calibration assessment, selectivity, precision, accuracy, matrix effect, extraction recovery, and stability, and all results have been found to be acceptable. The method has been successfully applied to pralsetinib concentration detection in a clinical sample, and the concentrations have been found to be 475ng/mL and 61.55 µg/mL in the CSF and plasma, respectively. CONCLUSION: We have developed a quick and effective method for concentration detection in both plasma and CSF, and it can be applied for drug monitoring in clinical practice. The method can also provide a reference for further optimization.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38587806

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways, it is characterized by impaired lung function induced by cigarette smoke (CS). Reduced DACH1 expression has a detrimental role in numerous disorders. However, its role in COPD remains understudied. This study aims to elucidate the role and underlying mechanism of DACH1 in airway inflammation of COPD. DACH1 expression was measured in lung tissues of patients with COPD. Airway epithelium-specific DACH1 knockdown mice and AAV-transfected DACH1 overexpressed mice were used to investigate its role and potential for therapeutic targeting in experimental COPD caused by CS. Furthermore, we discovered a potential mechanism of DACH1 in inflammation induced by cigarette smoke extract simulation (CSE) in vitro. Compared to non-smokers and smokers without COPD, COPD patients had reduced DACH1 expression, especially in the airway epithelium. Airway epithelium-specific DACH1 knockdown aggravated mice airway inflammation and lung function decline caused by CS, whereas DACH1 overexpression protected mice from airway inflammation and lung function decline. DACH1 knockdown and overexpression promoted and inhibited IL-6 and IL-8 secretion in 16 HBE cells after CSE simulation, respectively. Nuclear factor erythroid 2-related factor 2 (NRF2) was discovered to be a novel downstream target of DACH1, which binds directly to its promoter. By activating NRF2 signaling, DACH1 induction reduced inflammation. DACH1 levels are lower in smokers and nonsmoking COPD patients when compared to nonsmokers. DACH1 has protective effects against inflammation induced by CS by activating NRF2 signaling pathway. Targeting DACH1 is a potentially viable therapeutic approach for COPD treatment.

13.
Sci Rep ; 14(1): 6162, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485743

RESUMO

Marital status is an independent prognostic factor for survival in many types of cancers, but its prognostic impact on patients with prostate cancer (PCa) has not been established. The aim of this study was to explore the independent prognostic factors of PCa and to investigate the effect of marital status on survival outcomes in patients with different stratified by PCa. Using the surveillance, epidemiology, and end results (SEER) database, we collected data on 584,655 PCa patients diagnosed between 1975 and 2019. Marital status was classified as married, divorced, widowed, and single. We used the Kaplan-Meier analysis and single multivariate Cox proportional hazards regression analysis to determine the effect of marital status on overall survival (OS) and cancer-specific survival (CSS). In addition, we performed subgroup analyses for different ages, Gleason score and PSA values, and performed a 1:1 propensity score matching (PSM) to reduce the impact of confounding factors to obtain more accurate matching results. According to our findings, marital status was an independent prognostic factor for the survival of PCa patients and a better prognosis of married patients. Moreover, we also found that factors such as age, TNM stage, Gleason score, and PSA concentration were also considered as important predictors for the prognosis of PCa. The above findings can facilitate early detection and treatment of high-risk PCa patients, prolong their life and reduce family burden.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Pontuação de Propensão , Programa de SEER , Estado Civil , Prognóstico
14.
Artigo em Inglês | MEDLINE | ID: mdl-38526576

RESUMO

PURPOSE: This large retrospective, single-center, follow-up study investigated the endoscopic prelacrimal recess approach (PLRA) for treating maxillary sinus inverted papilloma (MSIP). METHODS: Between January 2007 and November 2022, patients with MSIP treated with PLRA were enrolled. Data on clinical manifestations, imaging, and surgical procedures were collected. The visual analog scale (VAS) scores for maxillofacial numbness and nasal symptoms and the SNOT-22 nasal symptom scores were statistically analyzed. RESULT: Of 122 patients (68 males and 54 females) enrolled in the study, with a mean age of 50.75 ± 12.84 years (26-80 years), 111 patients underwent PLRA, nine underwent modified PLRA, one converted to an endoscopic medial maxillectomy (EMM), and one to an endoscopic modified Denker's approach. The average follow-up was 86.60 (13-192) months, the recurrence rate was 3.28%, and 29 patients (23.77%) complained of maxillofacial numbness one month postoperatively, which disappeared in most cases one year after surgery. Five patients (4.10%) experienced mild numbness at the end of the follow-up period. Maxillary sinus ostium contracture or atresia occurred in two cases (1.64%). After surgery, the VAS nasal symptom scores improved significantly (P < 0.001). SNOT-22 indicated that the most common postoperative symptom was thick nasal discharge. CONCLUSION: PLRA is a flexible first-choice surgical treatment for maxillary sinus inverted papilloma and can be modified according to the extent of the lesion, the surgeon's experience and technique, and surgical instruments. That can help achieve complete resection and reduce recurrence and surgical complications. Upper teeth numbness, the most common postoperative complication, tends to disappear after 1 year.

15.
Nat Commun ; 15(1): 2566, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528014

RESUMO

A promising metal-organic complex, iron (Fe)-NTMPA2, consisting of Fe(III) chloride and nitrilotri-(methylphosphonic acid) (NTMPA), is designed for use in aqueous iron redox flow batteries. A full-cell testing, where a concentrated Fe-NTMPA2 anolyte (0.67 M) is paired with a Fe-CN catholyte, demonstrates exceptional cycling stability over 1000 charge/discharge cycles, and noteworthy performances, including 96% capacity utilization, a minimal capacity fade rate of 0.0013% per cycle (1.3% over 1,000 cycles), high Coulombic efficiency and energy efficiency near 100% and 87%, respectively, all achieved under a current density of 20 mA·cm-². Furthermore, density functional theory unveils two potential coordination structures for Fe-NTMPA2 complexes, improving the understanding between the ligand coordination environment and electron transfer kinetics. When paired with a high redox potential Fe-Dcbpy/CN catholyte, 2,2'-bipyridine-4,4'-dicarboxylic (Dcbpy) acid and cyanide (CN) ligands, Fe-NTMPA2 demonstrates a notably elevated cell voltage of 1 V, enabling a practical energy density of up to 9 Wh/L.

16.
Int Heart J ; 65(2): 308-317, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38479850

RESUMO

Targeting circular RNA has been a novel approach to preventing and limiting acute myocardial infarction (AMI). Here, we planned to investigate the role and mechanism of circ_0020887 in AMI progression.Hypoxic injury in human cardiomyocytes (AC16) was measured using cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, and colorimetric assay kits. RNA and protein expressions were determined using real-time quantitative PCR and western blotting. Direct interplay between RNAs was determined using dual-luciferase reporter, RNA pull-down, and RIP assays.In the plasma and hypoxia-induced AC16 cells of patients with AMI, circ_0020887 and miR-370-3p were upregulated and downregulated, respectively, concomitant with the upregulation of cytochrome P450 1B1 (CYP1B1). Circ_0020887 interference could inhibit hypoxia-induced AC16 cell apoptosis, oxidative stress, and inflammatory response. Circ_0020887 could sponge miR-370-3p, and miR-370-3p could target CYP1B1. The inhibition effect of circ_0020887 knockdown on hypoxia-induced AC16 cell injury could be reversed by the miR-370-3p inhibitor. Besides, CYP1B1 overexpression also overturned the suppressive effect of miR-370-3p on hypoxia-induced AC16 cell apoptosis, oxidative stress, and inflammatory response.In conclusion, circ_0020887 regulated the miR-370-3p/CYP1B1 axis to regulate hypoxia-induced cardiomyocyte injury, confirming that circ_0020887 might promote cardiomyocyte injury.


Assuntos
MicroRNAs , Infarto do Miocárdio , Humanos , Miócitos Cardíacos , Apoptose/genética , Western Blotting , Hipóxia , MicroRNAs/genética , Proliferação de Células , Citocromo P-450 CYP1B1
17.
Aging Cell ; 23(3): e14053, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38375951

RESUMO

Aging impairs osteoblast function and bone turnover, resulting in age-related bone degeneration. Stress granules (SGs) are membrane-less organelles that assemble in response to stress via the recruitment of RNA-binding proteins (RBPs), and have emerged as a novel mechanism in age-related diseases. Here, we identified HuR as a bone-related RBP that aggregated into SGs and facilitated osteogenesis during aging. HuR-positive SG formation increased during osteoblast differentiation, and HuR overexpression mitigated the reduction in SG formation observed in senescent osteoblasts. Moreover, HuR positively regulated the mRNA stability and expression of its target ß-catenin by binding and recruiting ß-catenin into SGs. As a potential therapeutic target, HuR activator apigenin (API) enhanced its expression and thus aided osteoblasts differentiation. API treatment increased HuR nuclear export, enhanced the recruitment of ß-catenin into HuR-positive SGs, facilitated ß-catenin nuclear translocation, and contributed osteogenesis. Our findings highlight the roles of HuR and its SGs in promoting osteogenesis during skeletal aging and lay the groundwork for novel therapeutic strategies against age-related skeletal disorders.


Assuntos
Osteoporose , Grânulos de Estresse , beta Catenina , Humanos , beta Catenina/metabolismo , Osteoblastos/metabolismo , Osteogênese , Osteoporose/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Semelhante a ELAV 1/metabolismo
18.
Endoscopy ; 56(5): 334-342, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412993

RESUMO

BACKGROUND: Inaccurate Forrest classification may significantly affect clinical outcomes, especially in high risk patients. Therefore, this study aimed to develop a real-time deep convolutional neural network (DCNN) system to assess the Forrest classification of peptic ulcer bleeding (PUB). METHODS: A training dataset (3868 endoscopic images) and an internal validation dataset (834 images) were retrospectively collected from the 900th Hospital, Fuzhou, China. In addition, 521 images collected from four other hospitals were used for external validation. Finally, 46 endoscopic videos were prospectively collected to assess the real-time diagnostic performance of the DCNN system, whose diagnostic performance was also prospectively compared with that of three senior and three junior endoscopists. RESULTS: The DCNN system had a satisfactory diagnostic performance in the assessment of Forrest classification, with an accuracy of 91.2% (95%CI 89.5%-92.6%) and a macro-average area under the receiver operating characteristic curve of 0.80 in the validation dataset. Moreover, the DCNN system could judge suspicious regions automatically using Forrest classification in real-time videos, with an accuracy of 92.0% (95%CI 80.8%-97.8%). The DCNN system showed more accurate and stable diagnostic performance than endoscopists in the prospective clinical comparison test. This system helped to slightly improve the diagnostic performance of senior endoscopists and considerably enhance that of junior endoscopists. CONCLUSION: The DCNN system for the assessment of the Forrest classification of PUB showed satisfactory diagnostic performance, which was slightly superior to that of senior endoscopists. It could therefore effectively assist junior endoscopists in making such diagnoses during gastroscopy.


Assuntos
Úlcera Péptica Hemorrágica , Humanos , Úlcera Péptica Hemorrágica/diagnóstico , Úlcera Péptica Hemorrágica/classificação , Estudos Retrospectivos , Masculino , Pessoa de Meia-Idade , Feminino , Inteligência Artificial , Redes Neurais de Computação , Curva ROC , Estudos Prospectivos , Idoso , Gravação em Vídeo , Gastroscopia/métodos , Reprodutibilidade dos Testes , Adulto
19.
Int J Biol Macromol ; 263(Pt 1): 130291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378119

RESUMO

In abdominal wall defect repair, surgical site infection (SSI) remains the primary cause of failure, while complications like visceral adhesions present significant challenges following patch implantation. We designed a Janus multifunctional hydrogel patch (JMP) with antibacterial, anti-inflammatory, and anti-adhesive properties. The patch comprises two distinct layers: a pro-healing layer and an anti-adhesion layer. The pro-healing layer was created by a simple mixture of polyvinyl alcohol (PVA), quaternized chitosan (QCS), and gallic acid (GA), crosslinked to form PVA/QCS/GA (PQG) hydrogels through GA's self-assembly effect and hydrogen bonding. Additionally, the PVA anti-adhesive layer was constructed using a drying-assisted salting method, providing a smooth and dense physical barrier to prevent visceral adhesion while offering essential mechanical support to the abdominal wall. The hydrogel patch demonstrates widely adjustable mechanical properties, exceptional biocompatibility, and potent antimicrobial properties, along with a sustained and stable release of antioxidants. In rat models of skin and abdominal wall defects, the JMP effectively promoted tissue healing by controlling infection, inhibiting inflammation, stimulating neovascularization, and successfully preventing the formation of visceral adhesions. These compelling results highlight the JMP's potential to improve the success rate of abdominal wall defect repair and reduce surgical complications.


Assuntos
Parede Abdominal , Quitosana , Ratos , Animais , Hidrogéis/farmacologia , Álcool de Polivinil , Ácido Gálico , Parede Abdominal/cirurgia , Antibacterianos/farmacologia , Adesivos , Aderências Teciduais/prevenção & controle
20.
J Adv Res ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342401

RESUMO

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease typically characterized by chronic airway inflammation, with emerging evidence highlighting the driving role of cellular senescence-related lung aging. Accelerated lung aging and inflammation mutually reinforce each other, creating a detrimental cycle that contributes to disease progression. Growth arrest and DNA damage-inducible (GADD45) family has been reported to involve in multiple biological processes, including inflammation and senescence. However, the role of GADD45 family in COPD remains elusive. OBJECTIVES: To investigate the role and mechanism of GADD45 family in COPD pathogenesis. METHODS: Expressions of GADD45 family were evaluated by bioinformatic analysis combined with detections in clinical specimens. The effects of GADD45B on inflammation and senescence were investigated via constructing cell model with siRNA transfection or overexpression lentivirus infection and animal model with Gadd45b knockout. Targeted bisulfite sequencing was performed to probe the influence of DNA methylation in GADD45B expression in COPD. RESULTS: GADD45B expression was significantly increased in COPD patients and strongly associated with lung function, whereas other family members presented no changes. GADD45B upregulation was confirmed in mice exposed by cigarette smoke (CS) and HBE cells treated by CS extract as well. Moreover, experiments involving bidirectional modulation of GADD45B expression in HBE cells further substantiated its positive regulatory role in inflammatory response and cellular senescence. Mechanically, GADD45B-facilitated inflammation was directly mediated by p38 phosphorylation, while GADD45B interacted with FOS to promote cellular senescence in a p38 phosphorylation-independent manner. Furthermore, Gadd45b deficiency remarkably alleviated inflammation and senescence of lungs in CS-exposed mice, as well as improved emphysema and lung function. Eventually, in vivo and vitro experiments demonstrated that GADD45B overexpression was partially mediated by CS-induced DNA hypomethylation. CONCLUSION: Our findings have shed light on the impact of GADD45B in the pathogenesis of COPD, thereby offering a promising target for intervention in clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA