Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686219

RESUMO

Digital PCR (dPCR) has great potential for assessing gene editing or gene mutation due to its ability to independently inspect each DNA template in parallel. However, current dPCR methods use a fluorescence-labeled probe to detect gene variation events, and their ability to distinguish variated sequences from the wild-type sequence is limited by the probe's tolerance to mismatch. To address this, we have developed a novel dPCR method that uses a primer instead of a probe to sense gene variation. The enhanced Taq DNA polymerase in the PCR system has a high mismatch sensitivity, which enables our dPCR method to distinguish gene mutations from wild-type sequences. Compared to current dPCR methods, our method shows superior precision in assessing gene editing efficiency and single-base DNA mutation. This presents a promising opportunity to advance gene editing research and rare gene mutation detection.


Assuntos
Reação em Cadeia da Polimerase , Replicação do DNA , Corantes Fluorescentes , Edição de Genes , Mutação , Reação em Cadeia da Polimerase/métodos
2.
Biotechnol J ; 17(4): e2100341, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34894203

RESUMO

BACKGROUND: The causal single nucleotide polymorphisms (SNPs) leading to increased cancer predisposition mainly function as gene regulatory elements, the evaluation of which largely relies on the parallel reporter gene assay system. However, the common DNA barcodes used in parallel reporter gene assay systems typically because nucleotide composition bias, and many barcodes must be allocated for each sequence to reduce the bias effect. MAIN METHODS AND MAJOR RESULTS: Here, a versatile dinucleotide-tag reporter system (DiR) that enables parallel analysis of regulatory elements with minimized bias based on next-generation sequencing is described. The DiR system is more robust than the classical luciferase assay method, particularly for the investigation of moderate-level regulatory elements. The authors applied the DiR-seq assay in the functional evaluation of SNPs with prostate cancer risk and nominated two and six regulatory SNPs in PC-3 and LNCaP cells, respectively. CONCLUSIONS AND IMPLICATIONS: The DiR system has great potential to advance the functional study of SNPs associated with polygenic disease risks.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Genes Reporter/genética , Humanos , Masculino , Mutação , Polimorfismo de Nucleotídeo Único/genética , Sequências Reguladoras de Ácido Nucleico
3.
Front Oncol ; 11: 754206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858826

RESUMO

Aberrant telomerase reverse transcriptase (TERT) expression is crucial for tumor survival and cancer cells escaping apoptosis. Multiple TERT-locus variants at 5p15 have been discovered in association with cancer risk, yet the underlying mechanisms and clinical impacts remain unclear. Here, our association studies showed that the TERT promoter variant rs2853669 confers a risk of prostate cancer (PCa) in different ethnic groups. Further functional investigation revealed that the allele-specific binding of MYC and E2F1 at TERT promoter variant rs2853669 associates with elevated level of TERT in PCa. Mechanistically, androgen stimulations promoted the binding of MYC to allele T of rs2853669, thereby activating TERT, whereas hormone deprivations enhanced E2F1 binding at allele C of rs2853669, thus upregulating TERT expression. Notably, E2F1 could cooperate with AR signaling to regulate MYC expression. Clinical data demonstrated synergistic effects of MYC/E2F1/TERT expression or with the TT and CC genotype of rs2853669 on PCa prognosis and severity. Strikingly, single-nucleotide editing assays showed that the CC genotype of rs2853669 obviously promotes epithelial-mesenchymal transition (EMT) and the development of castration-resistant PCa (CRPC), confirmed by unbiased global transcriptome profiling. Our findings thus provided compelling evidence for understanding the roles of noncoding variations coordinated with androgen signaling and oncogenic transcription factors in mis-regulating TERT expression and driving PCa.

4.
Curr Issues Mol Biol ; 43(3): 1756-1777, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34889888

RESUMO

Genome-wide association studies (GWAS) have identified more than 2000 single nucleotide polymorphisms (SNPs) associated with breast cancer susceptibility, most of which are located in the non-coding region. However, the causal SNPs functioning as gene regulatory elements still remain largely undisclosed. Here, we applied a Dinucleotide Parallel Reporter sequencing (DiR-seq) assay to evaluate 288 breast cancer risk SNPs in nine different breast cancer cell lines. Further multi-omics analysis with the ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing), DNase-seq (DNase I hypersensitive sites sequencing) and histone modification ChIP-seq (Chromatin Immunoprecipitation sequencing) nominated seven functional SNPs in breast cancer cells. Functional investigations show that rs4808611 affects breast cancer progression by altering the gene expression of NR2F6. For the other site, rs2236007, the alteration promotes the binding of the suppressive transcription factor EGR1 and results in the downregulation of PAX9 expression. The downregulated expression of PAX9 causes cancer malignancies and is associated with the poor prognosis of breast cancer patients. Our findings contribute to defining the functional risk SNPs and the related genes for breast cancer risk prediction.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Predisposição Genética para Doença , Variação Genética , Sequências Reguladoras de Ácido Nucleico , Alelos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Sobrevivência Celular , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional/métodos , Feminino , Edição de Genes , Estudos de Associação Genética , Testes Genéticos , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estimativa de Kaplan-Meier , Polimorfismo de Nucleotídeo Único , Prognóstico
5.
Cancers (Basel) ; 13(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34359652

RESUMO

Numerous genetic variants located in autophagy-related genes have been identified for association with various cancer risks, but the biological mechanisms underlying these associations remain largely unknown. Here we investigated their regulatory activity with a parallel reporter gene assay system in breast cancer cells and identified multiple regulatory SNP sites, including rs10514231. It was located in the second intron of ATG10 and showed gene regulatory activity in most breast cancer cells we used. Mechanistically, the T allele of rs10514231 led to ATP6AP1L downregulation by decreasing the binding affinity of TCF7L2. Overexpression of the ATP6AP1L gene in cancer cells diminished cell proliferation, migration, and invasion. Notably, ATP6AP1L downregulation correlated with breast cancer risk and with poor prognosis in patients. These results provide a plausible mechanism behind the association of rs10514231 with breast cancer risk and will be important for more effective therapeutic target identification for precision medicine.

6.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445492

RESUMO

Functional characterization of cancer risk-associated single nucleotide polymorphism (SNP) identified by genome-wide association studies (GWAS) has become a big challenge. To identify the regulatory risk SNPs that can lead to transcriptional misregulation, we performed parallel reporter gene assays with both alleles of 213 prostate cancer risk-associated GWAS SNPs in 22Rv1 cells. We disclosed 32 regulatory SNPs that exhibited different regulatory activities with two alleles. For one of the regulatory SNPs, rs684232, we found that the variation altered chromatin binding of transcription factor FOXA1 on the DNA region and led to aberrant gene expression of VPS53, FAM57A, and GEMIN4, which play vital roles in prostate cancer malignancy. Our findings reveal the roles and underlying mechanism of rs684232 in prostate cancer progression and hold great promise in benefiting prostate cancer patients with prognostic prediction and target therapies.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/metabolismo , Proteínas de Membrana/genética , Antígenos de Histocompatibilidade Menor/genética , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas de Transporte Vesicular/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/metabolismo , Análise de Sequência de RNA , Análise de Sobrevida
7.
Protein Cell ; 11(11): 825-845, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32144580

RESUMO

This study was designed to evaluate ERK5 expression in lung cancer and malignant melanoma progression and to ascertain the involvement of ERK5 signaling in lung cancer and melanoma. We show that ERK5 expression is abundant in human lung cancer samples, and elevated ERK5 expression in lung cancer was linked to the acquisition of increased metastatic and invasive potential. Importantly, we observed a significant correlation between ERK5 activity and FAK expression and its phosphorylation at the Ser910 site. Mechanistically, ERK5 increased the expression of the transcription factor USF1, which could transcriptionally upregulate FAK expression, resulting in FAK signaling activation to promote cell migration. We also provided evidence that the phosphorylation of FAK at Ser910 was due to ERK5 but not ERK1/2, and we then suggested a role for Ser910 in the control of cell motility. In addition, ERK5 had targets in addition to FAK that regulate epithelial-to-mesenchymal transition and cell motility in cancer cells. Taken together, our findings uncover a cancer metastasis-promoting role for ERK5 and provide the rationale for targeting ERK5 as a potential therapeutic approach.


Assuntos
Movimento Celular , Quinase 1 de Adesão Focal/metabolismo , Neoplasias Pulmonares/enzimologia , Sistema de Sinalização das MAP Quinases , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteínas de Neoplasias/metabolismo , Células A549 , Animais , Transição Epitelial-Mesenquimal/genética , Quinase 1 de Adesão Focal/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteína Quinase 7 Ativada por Mitógeno/genética , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/genética
9.
Cancers (Basel) ; 11(4)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013831

RESUMO

Homeobox (HOX) transcription factors, encoded by a subset of homeodomain superfamily genes, play pivotal roles in many aspects of cellular physiology, embryonic development, and tissue homeostasis. Findings over the past decade have revealed that mutations in HOX genes can lead to increased cancer predisposition, and HOX genes might mediate the effect of many other cancer susceptibility factors by recognizing or executing altered genetic information. Remarkably, several lines of evidence highlight the interplays between HOX transcription factors and cancer risk loci discovered by genome-wide association studies, thereby gaining molecular and biological insight into cancer etiology. In addition, deregulated HOX gene expression impacts various aspects of cancer progression, including tumor angiogenesis, cell autophagy, proliferation, apoptosis, tumor cell migration, and metabolism. In this review, we will discuss the fundamental roles of HOX genes in cancer susceptibility and progression, highlighting multiple molecular mechanisms of HOX involved gene misregulation, as well as their potential implications in clinical practice.

10.
Theranostics ; 8(13): 3504-3516, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026862

RESUMO

Many plant-specialized metabolites have remedial properties and provide an endless chemical resource for drug discovery. However, most of these metabolites have promiscuous binding targets in mammalian cells and elicit a series of responses that collectively change the physiology of the cells. To explore the potential of these multi-functional and multi-targeted drugs, it is critical to understand the direct relationships between their key chemical features, the corresponding binding targets and the relevant biological effects, which is a prerequisite for future drug modification and optimization. Methods: We introduced and demonstrated a general workflow, called Comparative Profiling of Analog Targets (CPAT), to connect specific biological effects with defined chemical structures of drugs. Using resveratrol (RSV) as an example, we have synthesized and characterized a series of partial functional analogs of RSV. An analog (named RSVN) that specifically lost the inhibitory effect of RSV in cell migration was identified. The binding targets of RSVN and RSV was profiled and compared. Results: Comparative profiling of the RSV and RSVN binding targets showed that, unlike RSV, RSVN failed to target specific components involved in DNA methylation (histone deacetylase 1 [HDAC1] and DNA methyltransferase 3 alpha [DNMT3a]), suggesting that RSV suppresses cell migration through epigenetic regulation. Indeed, RSV treatment recruited HDAC1 and DNMT3a to the promoter region of the focal adhesion kinase (FAK), a key factor involved in cell adhesion, enhanced the promoter methylation, and thus attenuated the protein expression. The inhibitory effect of RSV in cell migration was diminished once FAK expression was restored. Thus, the mechanism of RSV in inhibiting cell migration could be largely accounted to epigenetically control of FAK expression. Conclusion: Our results showed that even though RSV exhibits promiscuous binding, its inhibitory effect on cell migration can be mechanistically understood. First, the presence of 4'-hydroxystilbene within the RSV structure is essential for this activity. Second, it inhibits cell migration through epigenetically based downregulation of FAK expression. Taken together, we propose that CPAT might also be adapted to delineate the specific function of other natural products (NPs) that exhibit binding promiscuity.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Perfilação da Expressão Gênica , Melanoma/tratamento farmacológico , Metástase Neoplásica/tratamento farmacológico , Resveratrol/farmacologia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Movimento Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Resveratrol/administração & dosagem , Resveratrol/análogos & derivados , Relação Estrutura-Atividade
11.
Cell ; 174(3): 576-589.e18, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30033361

RESUMO

Genome-wide association studies (GWAS) have identified rs11672691 at 19q13 associated with aggressive prostate cancer (PCa). Here, we independently confirmed the finding in a cohort of 2,738 PCa patients and discovered the biological mechanism underlying this association. We found an association of the aggressive PCa-associated allele G of rs11672691 with elevated transcript levels of two biologically plausible candidate genes, PCAT19 and CEACAM21, implicated in PCa cell growth and tumor progression. Mechanistically, rs11672691 resides in an enhancer element and alters the binding site of HOXA2, a novel oncogenic transcription factor with prognostic potential in PCa. Remarkably, CRISPR/Cas9-mediated single-nucleotide editing showed the direct effect of rs11672691 on PCAT19 and CEACAM21 expression and PCa cellular aggressive phenotype. Clinical data demonstrated synergistic effects of rs11672691 genotype and PCAT19/CEACAM21 gene expression on PCa prognosis. These results provide a plausible mechanism for rs11672691 associated with aggressive PCa and thus lay the ground work for translating this finding to the clinic.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética , Adulto , Alelos , Linhagem Celular Tumoral , Cromossomos Humanos Par 19/genética , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica/genética , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Proteínas de Homeodomínio , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Prognóstico
12.
Oncotarget ; 8(16): 26941-26958, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28199969

RESUMO

Flavonoids are naturally occurring polyphenolic compounds and are among the most promising anticancer agents. Here, we demonstrate that the flavonoid astragalin (AG), also known as kaempferol-3-O-ß-D-glucoside, induces cell death. This was prevented by the caspase inhibitors z-DEVD-FMK and z-LEHD-FMK. AG-induced cell death was associated with an increase in the Bax:Bcl-2 ratio and amplified by the inhibition of extracellular signal-regulated kinase (ERK)-1/2 and Akt signaling. Meanwhile, AG suppressed LPS-induced NF-κB activation. Additional studies revealed that AG inhibited tumor necrosis factor-alpha (TNFα)-induced NF-κB activity. AG also potentiated TNFα-induced apoptosis in A549 cells. Furthermore, using a mouse xenograft model, we demonstrated that AG suppressed tumor growth and induced cancer cell apoptosis in vivo. Taken together, these results suggest that AG may be a promising cancer therapeutic drug that warrants further investigation into its potential clinical applications.


Assuntos
Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Quempferóis/farmacologia , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteína Ligante Fas/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno , Fosfatidilinositol 3-Quinases/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor fas/metabolismo
13.
Sci Rep ; 6: 35468, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752089

RESUMO

Apigenin (APG) is an edible plant-derived flavonoid that shows modest antitumor activities in vitro and in vivo. APG treatment results in cell growth arrest and apoptosis in various types of tumors by modulating several signaling pathways. In the present study, we evaluated interactions between APG and TRAIL in non-small cell lung cancer (NSCLC) cells. We observed a synergistic effect between APG and TRAIL on apoptosis of NSCLC cells. A549 cells and H1299 cells were resistant to TRAIL treatment alone. The presence of APG sensitized NSCLC cells to TRAIL-induced apoptosis by upregulating the levels of death receptor 4 (DR4) and death receptor 5 (DR5) in a p53-dependent manner. Consistently, the pro-apoptotic proteins Bad and Bax were upregulated, while the anti-apoptotic proteins Bcl-xl and Bcl-2 were downregulated. Meanwhile, APG suppressed NF-κB, AKT and ERK activation. Treatment with specific small-molecule inhibitors of these pathways enhanced TRAIL-induced cell death, mirroring the effect of APG. Furthermore, using a mouse xenograft model, we demonstrated that the combined treatment completely suppressed tumor growth as compared with APG or TRAIL treatment alone. Our results demonstrate a novel strategy to enhance TRAIL-induced antitumor activity in NSCLC cells by APG via inhibition of the NF-κB, AKT and ERK prosurvival regulators.


Assuntos
Apigenina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nat Genet ; 46(2): 126-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24390282

RESUMO

Genome-wide association studies have identified thousands of SNPs associated with predisposition to various diseases, including prostate cancer. However, the mechanistic roles of these SNPs remain poorly defined, particularly for noncoding polymorphisms. Here we find that the prostate cancer risk-associated SNP rs339331 at 6q22 lies within a functional HOXB13-binding site. The risk-associated T allele at rs339331 increases binding of HOXB13 to a transcriptional enhancer, conferring allele-specific upregulation of the rs339331-associated gene RFX6. Suppression of RFX6 diminishes prostate cancer cell proliferation, migration and invasion. Clinical data indicate that RFX6 upregulation in human prostate cancers correlates with tumor progression, metastasis and risk of biochemical relapse. Finally, we observe a significant association between the risk-associated T allele at rs339331 and increased RFX6 mRNA levels in human prostate tumors. Together, our results suggest that rs339331 affects prostate cancer risk by altering RFX6 expression through a functional interaction with the prostate cancer susceptibility gene HOXB13.


Assuntos
Cromatina/metabolismo , Cromossomos Humanos Par 6/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Proteínas de Homeodomínio/metabolismo , Neoplasias da Próstata/genética , Fatores de Transcrição/genética , Sequência de Bases , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Clonagem Molecular , Estudos de Coortes , Ensaio de Desvio de Mobilidade Eletroforética , Finlândia , Genótipo , Proteínas de Homeodomínio/genética , Humanos , Masculino , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição de Fator Regulador X , Análise de Sequência de DNA , Suécia
15.
PLoS One ; 8(11): e79336, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260201

RESUMO

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase critically involved in cancer metastasis. We found an elevation of FAK expression in highly metastatic melanoma B16F10 cells compared with its less metastatic partner B16F1 cells. Down-regulation of the FAK expression by either small interfering RNA or dominant negative FAK (FAK Related Non-Kinase, FRNK) inhibited the B16F10 cell migration in vitro and invasiveness in vivo. The mechanism by which FAK activity is up-regulated in highly metastatic cells remains unclear. In this study, we reported for the first time that one of the Est family proteins, PEA3, is able to transactivate FAK expression through binding to the promoter region of FAK. We identified a PEA3-binding site between nucleotides -170 and +43 in the FAK promoter that was critical for the responsiveness to PEA3. A stronger affinity of PEA3 to this region contributed to the elevation of FAK expression in B16F10 cells. Both in vitro and in vivo knockdown of PEA3 gene successfully mimicked the cell migration and invasiveness as that induced by FAK down-regulation. The activation of the well-known upstream of PEA3, such as epidermal growth factor, JNK, and ERK can also induce FAK expression. Furthermore, in the metastatic human clinic tumor specimens from the patients with human primary oral squamous cell carcinoma, we observed a strong positive correlation among PEA3, FAK, and carcinoma metastasis. Taking together, we hypothesized that PEA3 might play an essential role in the activation of the FAK gene during tumor metastasis.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Metástase Neoplásica/genética , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Proteína-Tirosina Quinases de Adesão Focal/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
16.
Yao Xue Xue Bao ; 48(1): 45-51, 2013 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-23600140

RESUMO

This study is to investigate the apoptotic induction effect of the combination of diosgenin and TNF-related apoptosis-inducing ligand (TRAIL) on non-small-cell lung cancer cell line A549 by using the Chou-Talalay method, and observe the mechanism of the combination. The apoptotic effect of diosgenin or TRAIL alone and their combination on A549 and normal cell line 293T proliferation was measured by MTT assay. Chou-Talalay method was used to evaluate the combination effect. Apoptosis was examined by Hoechst 33342 staining and flow cytometry assay. Western blotting detects the expression of apoptosis-associated proteins. Diosgenin or TRAIL alone can inhibit proliferation ofA549 in a concentration-dependent manner. According to the Chou-Talalay method, when f(a) = 0.1, CI > 1, when f(a) > 0.1, CI < 1. Combined with TRAIL, the IC50 of diosgenin decreases from 21.864 to 14.810 micromol x L(-1) (P < 0.05) on A549 cells. But for 293T cells, IC50 of diosgenin does not change significantly. As with Hoechst 33342 staining and flow cytometry assay, the apoptosis ratios also increased in the combination group. At protein expression level, combination-treated group displays increased Caspase-8, Caspase-9, Bid, Caspase-3 activation and PARP cleavage, significantly decreased Bcl-2 and increased Bax expression, and MAPK pathways were activated. The combination of diosgenin and TRAIL has synergistic effect on A549 cells.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas , Diosgenina/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diosgenina/administração & dosagem , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem
17.
J Mol Med (Berl) ; 91(2): 219-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22948392

RESUMO

Many cancer cell types are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Here, we examined whether HSP70 suppression by small interfering RNA (siRNA) sensitized non-small cell lung cancer (NSCLC) cells to TRAIL-induced apoptosis and the underlying mechanisms. We demonstrated that HSP70 suppression by siRNA sensitized NSCLC cells to TRAIL-induced apoptosis by upregulating the expressions of death receptor 4 (DR4) and death receptor 5 (DR5) through activating NF-κB, JNK, and, subsequently, p53, consequently significantly amplifying TRAIL-mediated caspase-8 processing and activity, cytosolic translocation of cytochrome c, and cell death. Consistently, the pro-apoptotic proteins Bad and Bax were upregulated, while the anti-apoptotic protein Bcl-2 was downregulated. The luciferase activity of the DR4 promoter was blocked by a NF-κB pathway inhibitor BAY11-7082, suggesting that NF-κB activation plays an important role in the transcriptional upregulation of DR4. Additionally, HSP70 suppression inhibited the phosphorylation of ERK, AKT, and PKC, thereby downregulating c-FLIP-L. A549 xenografts in mice receiving HSP70 siRNA showed TRAIL-induced cell death and increased DR4/DR5 levels and reduced tumor growth. The combination of psiHSP70 gene therapy with TRAIL also significantly increased the survival benefits induced by TRAIL therapy alone. Interestingly, HSP27 siRNA and TRAIL together could not suppress tumor growth or prolong the survival of tumor-bearing mice significantly, although the combination could efficiently induce the apoptosis of A549 cells in vitro. Our findings suggest that HSP70 suppression or downregulation might be promising to overcome TRAIL resistance in cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/fisiologia , Proteínas de Choque Térmico HSP70/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Animais , Antineoplásicos/uso terapêutico , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , RNA Interferente Pequeno/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Carga Tumoral/efeitos dos fármacos , Regulação para Cima
18.
J Cell Biochem ; 114(1): 152-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22887049

RESUMO

Galangin, an active flavonoid extracted from the root of the Alpinia officinarum Hance, showed a cytotoxic effect on several cancer cell lines in vitro. However, there is no information available concerning its antimetastatic effect. Focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase, is involved in many aspects of cellular processes such as proliferation, adhesion, and invasion. Studies have shown that FAK is a promising target for therapeutic intervention in melanoma. In the present study, proliferation of B16F10 cells was suppressed when exposed to various doses of galangin. Inhibition on proliferation by galangin was also detected by clonogenic survival assay. The capabilities of cell adhesion, cell spreading, and cell motility were impaired by galangin, reinforced by F-actin rearrangement. Molecular data showed that both FAK mRNA level and protein level were reduced dose-dependently. Additionally, galangin reduced phosphorylation of FAK (Tyr397) protein. Transient transfection reporter assays showed that galangin suppressed the transcription of FAK gene, indicating FAK expression is a candidate target of galangin. The antimetastatic function of galangin is further supported by the fact that it could inhibit the formation of tumor colonies in the lung tissue on C57BL/6J mouse lung metastatic model using B16F10 melanoma cells. Immunochemical analyses showed that galangin decreased FAK expression in vivo. These data add to our new understanding that galangin can inhibit B16F10 melanoma metastasis both in vivo and in vitro, and that FAK is a valid therapeutic target against melanoma.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Flavonoides/uso terapêutico , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Invasividade Neoplásica/prevenção & controle , Neoplasias Cutâneas/tratamento farmacológico , Actinas/genética , Actinas/metabolismo , Alpinia/química , Animais , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Flavonoides/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
19.
Cytotechnology ; 65(3): 447-55, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23001390

RESUMO

Galangin, an active flavonoid present at high concentration in Alpinia officinarum Hance and propolis, shows cytotoxicity towards several cancer cell lines, including melanoma. However, the specific cellular targets of galangin-induced cytotoxicity in melanoma are still unknown. Here, we investigated the effects of galangin in B16F10 melanoma cells and explored the possible molecular mechanisms. Galangin significantly decreased cell viability of B16F10 cells, and also induced cell apoptosis shown by Hoechst 33342 staining and Annexin V-PI double staining flow cytometric assay. Furthermore, upon galangin treatment, disruption of mitochondrial membrane potential was observed by JC-1 staining. Western blotting analysis indicated that galangin activated apoptosis signaling cascades by cleavage of procaspase-9, procaspase-3 and PARP in B16F10 cells. Moreover, galangin significantly induced activation of phosphor-p38 MAPK in a time and dose dependent manner. SB203580, an inhibitor of p38, partially attenuated galangin-induced apoptosis in B16F10 cells. Taken together, this work suggests that galangin has the potential to be a promising agent for melanoma treatment and may be further evaluated as a chemotherapeutic agent.

20.
Acta Biochim Biophys Sin (Shanghai) ; 42(6): 381-7, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20539937

RESUMO

Cytosine methylation is a vital biology event. However, it is also the source of genomic instability due to deamination of 5'-methylcytosine by spontaneous hydrolysis, which produces thymine and results in G:T mismatches. Thymine DNA glycosylase and methyl-CpG-binding protein 4 are major DNA glycosylases involved in the mismatch repair progress, and their activities have been measured in many related researches. In this study, we developed a convenient spectrometric assay system for specific and quantitative measurement of intracellular DNA glycosylase activity. A G:T mismatch was introduced into the upstream region of firefly luciferase-coding sequence in the pGL3-control plasmid. Only if the G:T mismatches were repaired to G:C, will luciferase be expressed in transfected cells. By measuring luciferase activity, which is simple and convenient, the intracellular DNA glycosylase activity can be determined.


Assuntos
Endodesoxirribonucleases/análise , Espectrometria de Fluorescência/métodos , Timina DNA Glicosilase/análise , Animais , Pareamento Incorreto de Bases , Linhagem Celular Tumoral , Reparo do DNA , Genes Reporter , Vetores Genéticos , Luciferases de Vaga-Lume/metabolismo , Luciferases de Renilla/análise , Camundongos , Plasmídeos , Timina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA