Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221859

RESUMO

Molecular characterization of organic aerosol (OA) is crucial for understanding its sources and atmospheric processes. However, the chemical components of OA remain not well constrained. This study used gas chromatography-Orbitrap mass spectrometry (GC-Orbitrap MS) and GC-Quadrupole MS (GC-qMS) to investigate the organic composition in PM2.5 from Xi'an, Northwest China. GC-Orbitrap MS identified 335 organic tracers, including overlooked isomers and low-concentration molecules, approximately 1.6 times more than GC-qMS. The "molecular corridor" assessment shows the superior capability of GC-Orbitrap MS in identifying an expansive range of compounds with higher volatility and oxidation states, such as furanoses/pyranoses, di/hydroxy/ketonic acids, di/poly alcohols, aldehydes/ketones, and amines/amides. Seasonal variations in OA composition reflect diverse sources: increased di/poly alcohols in winter are derived from indoor emissions, furanoses/pyranoses and heterocyclics in spring and summer might be from biogenic emissions and secondary formation, and amides in autumn are probably from biomass burning. Integrating partial least squares discriminant analysis (PLS-DA) and potential source contribution function (PSCF) models, the source similarities and differences are further elucidated, highlighting the role of local emissions and transport from southern cities. This study offers new insights into the OA composition aided by the high mass resolution and sensitivity of GC-Orbitrap MS.

2.
Environ Sci Technol ; 58(8): 3629-3640, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354315

RESUMO

Key stages in people's lives have particular relevance for their health; the life-course approach stresses the importance of these stages. Here, we applied a life-course approach to analyze the health risks associated with PM2.5-bound elements, which were measured at three sites with varying environmental conditions in eastern China. Road traffic was found to be the primary source of PM2.5-bound elements at all three locations, but coal combustion was identified as the most important factor to induce both cancer risk (CR) and noncancer risk (NCR) across all age groups due to the higher toxicity of elements such as As and Pb associated with coal. Nearly half of NCR and over 90% of CR occurred in childhood (1-6 years) and adulthood (>18 years), respectively, and females have slightly higher NCR and lower CR than males. Rural population is found to be subject to the highest health risks. Synthesizing previous relevant studies and nationwide PM2.5 concentration measurements, we reveal ubiquitous and large urban-rural environmental exposure disparities over China.


Assuntos
Poluentes Atmosféricos , Material Particulado , Masculino , Feminino , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Estações do Ano , Monitoramento Ambiental , Medição de Risco , China/epidemiologia , Carvão Mineral/análise
3.
Environ Pollut ; 299: 118907, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35091017

RESUMO

Worship activities like burning joss paper during the Chinese Hanyi festival is a common, traditional custom in northwest China. However, the pollutants of e.g., soot particles, released from joss paper burning and the corresponding impacts on urban air quality were poorly investigated, which can be a particular concern since these activities are conducted in an uncontrolled manner. In this study, a long time-of-flight (LToF) soot particle aerosol mass spectrometry (SP-AMS) was deployed to characterize the refractory black carbon (rBC) emitted from the joss paper burning, as well as crop residue, coal combustion, and traffic during the Hanyi Festival in mid-November 2020 in the northwestern city of Xi'an in China. Large difference (from <5% to >100%) in the fragmentation patterns (Cn+) for the measured rBC from different source emissions were found when compared to the reference Regal Black. Using the receptor model of positive matrix factorization (PMF) with the multilinear engine (ME-2) algorithm, the obtained rBC mass spectra were used as the anchoring profiles to evaluate the emission strengths of different source types to the atmospheric rBC. Our results show that the burning of joss paper accounted for up to 42% of the atmospheric rBC mass, higher than traffic (14-17%), crop residue (10-17%), coal (18-20%) during the Hanyi festival in northwest China. Moreover, we show that the overall air quality can be worsened due to the practice of uncontrolled burning of joss paper during the festival, which is not just confined to the people who do the burning. Although worship activities occur mainly during festival periods, the pollution events contributed by joss paper burning may pose an acute exposure risk for public health. This is particularly important since burning joss paper during worship activities is common in China and most Asian countries with similar traditions.


Assuntos
Poluentes Atmosféricos , Fuligem , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Humanos , Material Particulado/análise , Estações do Ano , Fuligem/análise
4.
Chemosphere ; 254: 126849, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957276

RESUMO

Black carbon (BC), which is a by-product with incomplete combustion of carbonaceous materials, can be used as an indicator of combustion emissions and is an important climate forcer. In this study, a spatial-temporal synthesis of BC aerosols and the affecting factors was conducted in urban Beijing. As observed, BC showed a spatial pattern with high concentration in south and low in north. BC concentration evidently decreased by approximately 61% between 2005 and 2017. From 2015 to 2017, the mass ratio of BC/PM2.5 dropped by 28%, which suggested a more efficient effect of control measures to BC than PM2.5. The BC/CO ratio dropped by 22%, which indicated the decreasing emission from fossil fuel sources. With regard to BC loading, the spectral dependence of absorption aerosol exhibited significant seasonal variations. High absorption Ångström exponent (α) was observed during heating season, which reflected the increasing contribution of brown carbon (BrC) to light absorption. Backward trajectory analysis showed that the levels of BC and PM2.5 were high in Cluster-South and Cluster-West. BrC absorption was high in Cluster-West, Cluster-Northwest and Cluster-Northeast, due to the biomass and coal burning for domestic heating and aging processes on a regional scale. The effects of emission control and transport variability on pollutant variation were estimated on the basis of the cluster analysis. Results indicated that the effect of emission reduction was the major reason for the decrease of BC from 2015 to 2017, which resulted in a 34% reduction of BC concentration. Meanwhile, transport variability caused a 15% reduction.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Combustíveis Fósseis , Fuligem/análise , Aerossóis/análise , Pequim , Clima , Monitoramento Ambiental/métodos , Combustíveis Fósseis/análise , Meteorologia , Estações do Ano , Análise Espaço-Temporal , Emissões de Veículos/análise
5.
Environ Pollut ; 245: 226-234, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30423537

RESUMO

Five types of crop residue (rice, wheat, corn, sorghum, and sugarcane) collected from different provinces in China were used to characterize the chemical components and bioreactivity properties of fine particulate matter (PM2.5) emissions during open-burning scenarios. Organic carbon (OC) and elemental carbon (EC) were the most abundant components, contributing 41.7%-54.9% of PM2.5 emissions. The OC/EC ratio ranged from 8.8 to 31.2, indicating that organic matter was the dominant component of emissions. Potassium and chloride were the most abundant components in the portion of PM2.5 composed of water-soluble ions. The coefficient of divergence ranged from 0.27 to 0.51 among various emissions profiles. All samples exposed to a high PM2.5 concentration (150 µg/mL) exhibited a significant reduction in cell viability (A549 lung alveolar epithelial cells) and increase in lactic dehydrogenase (LDH) and interleukin 6 levels compared with those exposed to 20 or 0 µg/mL. Higher bioreactivity (determined according to LDH and interleukin 6 level) was observed for the rice, wheat, and corn samples than for the sorghum straw samples. Pearson's correlation analysis suggested that OC, heavy metals (chromium, manganese, iron, nickel, copper, zinc, tin, and barium), and water-soluble ions (fluoride, calcium, and sulfate) are the components potentially associated with LDH production.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Incêndios , Metais Pesados/análise , Material Particulado/análise , Células A549 , Carbono/análise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , China , Humanos , Interleucina-6/metabolismo , L-Lactato Desidrogenase/metabolismo , Oryza/química , Tamanho da Partícula , Saccharum/química , Sorghum/química , Triticum/química , Zea mays/química
6.
Environ Sci Technol ; 52(5): 2612-2617, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29436222

RESUMO

Residential coal combustion is a significant contributor to particulate urban air pollution in Chinese mega cities and some regions in Europe. While the particulate emission factors and the chemical characteristics of the organic and inorganic aerosol from coal combustion have been extensively studied, the chemical composition and nonmethane organic gas (NMOG) emission factors from residential coal combustion are mostly unknown. We conducted 23 individual burns in a traditional Chinese stove used for heating and cooking using five different coals with Chinese origins, characterizing the NMOG emissions using a proton transfer reaction time-of-flight mass spectrometer. The measured emission factors range from 1.5 to 14.1 g/kgcoal for bituminous coals and are below 0.1 g/kgcoal for anthracite coals. The emission factors from the bituminous coals are mostly influenced by the time until the coal is fully ignited. The emissions from the bituminous coals are dominated by aromatic and oxygenated aromatic compounds with a significant contribution of hydrocarbons. The results of this study can help to improve urban air pollution modeling in China and Eastern Europe and can be used to constrain a coal burning factor in ambient gas phase positive matrix factorization studies.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , China , Europa (Continente) , Europa Oriental , Espectrometria de Massas , Prótons , Tempo de Reação
7.
Environ Sci Pollut Res Int ; 23(5): 4569-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26518000

RESUMO

The carbonaceous aerosol concentrations in coarse particle (PM10: Dp ≤ 10 µm, particulate matter with an aerodynamic diameter less than 10 µm), fine particle (PM2.5: Dp ≤ 2.5 µm), and ultrafine particle (PM0.133: Dp ≤ 0.133 µm) carbon fractions in a rural area were investigated during haze events in northwestern China. The results indicated that PM2.5 contributed a large fraction in PM10. OC (organic carbon) accounted for 33, 41, and 62 % of PM10, PM2.5, and PM0.133, and those were 2, 2.4, and 0.4 % for EC (elemental carbon) in a rural area, respectively. OC3 was more abundant than other organic carbon fractions in three PMs, and char dominated EC in PM10 and PM2.5 while soot dominated EC in PM0.133. The present study inferred that K(+), OP, and OC3 are good biomass burning tracers for rural PM10 and PM2.5, but not for PM0.133 during haze pollution. Our results suggest that biomass burning is likely to be an important contributor to rural PMs in northwestern China. It is necessary to establish biomass burning control policies for the mitigation of severe haze pollution in a rural area.


Assuntos
Poluentes Atmosféricos/análise , Aerossóis/análise , Poluentes Atmosféricos/química , Biomassa , Carbono/análise , China , Tamanho da Partícula , Material Particulado/análise , Fuligem/química
8.
Sci Total Environ ; 505: 814-22, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25461084

RESUMO

29 parent- and alkyl-polycyclic aromatic hydrocarbons (PAHs), 15 oxygenated-PAHs (OPAHs), 11 nitrated-PAHs (NPAHs) and 4 azaarenes (AZAs) in both the gaseous and particulate phases, as well as the particulate-bound carbon fractions (organic carbon, elemental carbon, char, and soot) in ambient air sampled in March and September 2012 from an urban site in Xi'an, central China were extracted and analyzed. The average concentrations (gaseous+particulate) of ∑29PAHs, ∑15OPAHs, ∑11NPAHs and ∑4AZAs were 1267.0 ± 307.5, 113.8 ± 46.1, 11.8 ± 4.8 and 26.5 ± 11.8 ng m(-3) in March and 784.7 ± 165.1, 67.2 ± 9.8, 9.0 ± 1.5 and 21.6 ± 5.1 ng m(-3) in September, respectively. Concentrations of ∑29PAHs, ∑15OPAHs and ∑11NPAHs in particulates were significantly correlated with those of the carbon fractions (OC, EC, char and soot). Both absorption into organic matter in particles and adsorption onto the surface of particles were important for PAHs and OPAHs in both sampling periods, with more absorption occurring in September, while absorption was always the most important process for NPAHs. The total carcinogenic risk of PAHs plus the NPAHs was higher in March. Gaseous compounds, which were not considered in most previous studies, contributed 29 to 44% of the total health risk in March and September, respectively.


Assuntos
Carcinógenos/análise , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Atmosféricos/análise , Nitrogênio/química , Oxigênio/química , Risco , Medição de Risco
9.
Environ Monit Assess ; 186(5): 2835-49, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24420739

RESUMO

Seventeen airborne carbonyls including monocarbonyls and dicarbonyls were determined in urban and sub-urban sites of Xi'an, China in three seasons in 2010. In winter, acetone was the most abundant carbonyl in the urban site due to usage of organic solvents in constructions and laboratories and its slower atmospheric removal mechanisms by photolysis and reaction with hydroxyl radical than those of formaldehyde and acetaldehyde. In the sub-urban site, acetaldehyde was the most abundant carbonyl, followed by formaldehyde and acetone. During summer, however, formaldehyde was the most dominant carbonyl in both sites. The photooxidations of a wide range of volatile organic compounds (VOCs) yielded much more formaldehyde than other carbonyls under high solar radiation and temperature. In the urban site, the average concentrations of dicarbonyls (i.e., glyoxal and methyglyoxal) in spring and summer were higher than that in winter. Transformation of aromatic VOCs emitted from fuel evaporation leads to the formation of 1,2-dicarbonyls. A reverse trend was observed in sub-urban sites, as explained by the relatively low abundances and accumulations of VOC precursors in the rural atmosphere during warm seasons. Moreover, cumulative cancer risk based on measured outdoor carbonyls (formaldehyde and acetaldehyde) in Xi'an Jiaotong University and Heihe was estimated (8.82 × 10(-5) and 4.96 × 10(-5), respectively). This study provides a clear map on the abundances of carbonyls and their source interpretation in the largest and the most economic city in Northwestern China.


Assuntos
Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Acetaldeído/análise , Acetona/análise , Atmosfera/química , China , Cidades , Monitoramento Ambiental , Formaldeído/análise , Humanos , Estações do Ano
10.
Sci Total Environ ; 473-474: 77-87, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24361780

RESUMO

Polycyclic aromatic compounds (PACs) in air particulate matter contribute considerably to the health risk of air pollution. The objectives of this study were to assess the occurrence and variation in concentrations and sources of PM2.5-bound PACs [Oxygenated PAHs (OPAHs), nitro-PAHs and parent-PAHs] sampled from the atmosphere of a typical Chinese megacity (Xi'an), to study the influence of meteorological conditions on PACs and to estimate the lifetime excess cancer risk to the residents of Xi'an (from inhalation of PM2.5-bound PACs). To achieve these objectives, we sampled 24-h PM2.5 aerosols (once in every 6 days, from 5 July 2008 to 8 August 2009) from the atmosphere of Xi'an and measured the concentrations of PACs in them. The PM2.5-bound concentrations of Σcarbonyl-OPAHs, ∑hydroxyl+carboxyl-OPAHs, Σnitro-PAHs and Σalkyl+parent-PAHs ranged between 5-22, 0.2-13, 0.3-7, and 7-387 ng m(-3), respectively, being markedly higher than in most western cities. This represented a range of 0.01-0.4% and 0.002-0.06% of the mass of organic C in PM2.5 and the total mass of PM2.5, respectively. The sums of the concentrations of each compound group had winter-to-summer ratios ranging from 3 to 8 and most individual OPAHs and nitro-PAHs had higher concentrations in winter than in summer, suggesting a dominant influence of emissions from household heating and winter meteorological conditions. Ambient temperature, air pressure, and wind speed explained a large part of the temporal variation in PACs concentrations. The lifetime excess cancer risk from inhalation (attributable to selected PAHs and nitro-PAHs) was six fold higher in winter (averaging 1450 persons per million residents of Xi'an) than in summer. Our results call for the development of emission control measures.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Neoplasias/epidemiologia , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Atmosfera/química , China/epidemiologia , Cidades/estatística & dados numéricos , Humanos , Medição de Risco , Estações do Ano
11.
Anal Chem ; 81(5): 1777-83, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19199811

RESUMO

This study concerns the development of a coupled diffusion denuder system capable of separating and quantifying gaseous molecular iodine (I(2)) and two other highly reactive iodine species, ICl and HOI, which are collectively named activated iodine compounds (AIC). Both I(2) and AIC are key species in the atmospheric chemistry of iodine. 1,3,5-Trimethoxybenzene (1,3,5-TMB)- and alpha-cyclodextrin/(129)I(-) (alpha-CD/(129)I(-))-coated denuders proved to be suitable for the collection of gaseous AIC and I(2), respectively. The experimental collection efficiencies for AIC (tested as ICl) and I(2) agreed well with the theoretical values for gas flow rates in the range between 300 and 1800 mL min(-1). The coupled denuder system (1,3,5-TMB-coated denuder as front-denuder coupled upstream of an alpha-CD/(129)I(-)-coated denuder) was applied successfully to separate test gas mixtures of ICl and I(2) at various mixing ratios in the laboratory. The operation of both denuder systems was demonstrated to be independent of relative humidity (0-100%) and storage period (at least 2 weeks prior to and after sampling). Detection limits were achieved at sub-parts-per-trillion-by-volume (sub-pptv) level. The presented method provides a reliable and practical approach for the speciation of gaseous iodine compounds. In addition, we report for the first time ambient air measurements of AIC mixing ratios, carried out at the atmospheric research station in Mace Head, Ireland. A maximum concentration of AIC of 30.2 pptv was observed for nighttime measurements and 6.0 pptv for daytime measurements. A similar diurnal pattern was found for I(2) with an average concentration level of 23.2 pptv during daytime and 85.1 pptv during nighttime, indicating a strong correlation with AIC.


Assuntos
Atmosfera/análise , Cloretos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Iodetos/análise , Compostos de Iodo/análise , Iodo/química , Poluentes Atmosféricos/química , Atmosfera/química , Difusão , Desenho de Equipamento/métodos , Gases , Iodetos/química , Irlanda , Limite de Detecção , Tamanho da Partícula , Volatilização , alfa-Ciclodextrinas
12.
J Chromatogr A ; 1210(2): 135-41, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18849042

RESUMO

Reactive iodine species have been suggested to play an important role in the atmosphere (e.g. tropospheric ozone depletion, coastal new particle formation). However, there still exist major uncertainties about their atmospheric chemistry, mostly due to the lack of analytical approaches for the accurate speciation of certain key compounds. In this study, 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated denuder proved to be suitable for the differentiation between gaseous interhalogens (iodine monochloride (ICl), iodine monobromide (IBr)) and molecular iodine (I2) based on a selective collection/derivatization method. The results of the denuder sampling were compared with the results of impinger sampling in water, methanol and carbon tetrachloride solutions of 1,3,5-TMB. ICl and IBr are converted into 1-iodo-2,4,6-trimethoxybenzene (1-iodo-2,4,6-TMB) and 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB), respectively, in the denuder systems. The respective collection efficiency is 99.2% for ICl and 92.6% for IBr, at 500mLmin(-1) gas flow rate. The collection efficiency for I2 is lower than 1% in the same denuder system, but significantly increases to about 90% in the aqueous 1,3,5-TMB loaded impinger. The denuder-impinger coupled system was then used to differentiate and to collect the ICl, IBr and I2 gas mixtures, followed by gas chromatography-ion trap mass spectrometry (GC-MS) determination. The precision of the method is in general better than 9.1%. The parameters affecting denuder operation including sampling flow rate, sampling duration, and relative humidity have been evaluated. The presented method provides an attractive protocol for iodine species analysis for atmospheric chemistry research.


Assuntos
Ar/análise , Brometos/análise , Cloretos/análise , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Iodetos/análise , Cromatografia Gasosa-Espectrometria de Massas , Iodo/análise , Floroglucinol/análogos & derivados , Floroglucinol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA