Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Phys Rev Lett ; 133(2): 021005, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39073930

RESUMO

Dark photons have emerged as promising candidates for dark matter, and their search is a top priority in particle physics, astrophysics, and cosmology. We report the first use of a tunable niobium superconducting radio-frequency cavity for a scan search of dark photon dark matter with innovative data analysis techniques. We mechanically adjusted the resonant frequency of a cavity submerged in liquid helium at a temperature of 2 K, and scanned the dark photon mass over a frequency range of 1.37 MHz centered at 1.3 GHz. Our study leveraged the superconducting radio-frequency cavity's remarkably high quality factors of approximately 10^{10}, resulting in the most stringent constraints to date on a substantial portion of the exclusion parameter space on the kinetic mixing coefficient ε between dark photons and electromagnetic photons, yielding a value of ε<2.2×10^{-16}.

2.
Int J Biol Sci ; 20(6): 2072-2091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617528

RESUMO

Background: It had been shown that selective cardiac vagal activation holds great potential for heart regeneration. Optogenetics has clinical translation potential as a novel means of modulating targeted neurons. This study aimed to investigate whether cardiac vagal activation via optogenetics could improve heart regenerative repair after myocardial infarction (MI) and to identify the underlying mechanism. Methods: We used an adeno-associated virus (AAV) as the vector to deliver ChR2, a light-sensitive protein, to the left nodose ganglion (LNG). To assess the effects of the cardiac vagus nerve on cardiomyocyte (CM) proliferation and myocardial regeneration in vivo, the light-emitting diode illumination (470 nm) was applied for optogenetic stimulation to perform the gain-of-function experiment and the vagotomy was used as a loss-of-function assay. Finally, sequencing data and molecular biology experiments were analyzed to determine the possible mechanisms by which the cardiac vagus nerve affects myocardial regenerative repair after MI. Results: Absence of cardiac surface vagus nerve after MI was more common in adult hearts with low proliferative capacity, causing a poor prognosis. Gain- and loss-of-function experiments further demonstrated that optogenetic stimulation of the cardiac vagus nerve positively regulated cardiomyocyte (CM) proliferation and myocardial regeneration in vivo. More importantly, optogenetic stimulation attenuated ventricular remodeling and improved cardiac function after MI. Further analysis of sequencing results and flow cytometry revealed that cardiac vagal stimulation activated the IL-10/STAT3 pathway and promoted the polarization of cardiac macrophages to the M2 type, resulting in beneficial cardiac regenerative repair after MI. Conclusions: Targeting the cardiac vagus nerve by optogenetic stimulation induced macrophage M2 polarization by activating the IL-10/STAT3 signaling pathway, which obviously optimized the regenerative microenvironment and then improved cardiac function after MI.


Assuntos
Interleucina-10 , Infarto do Miocárdio , Adulto , Humanos , Interleucina-10/genética , Optogenética , Infarto do Miocárdio/terapia , Nervo Vago , Miócitos Cardíacos
3.
BMJ Open ; 13(10): e075579, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848300

RESUMO

BACKGROUND: SMARTTOUCH SURROUNDFLOW (STSF) catheter is the new generation of SMARTTOUCH (ST) catheter with an upgraded irrigation system for radiofrequency catheter ablation (RFCA) in patients with atrial fibrillation (AF). METHODS: This systematic literature review searched the major English and Chinese bibliographic databases from 2016 to 2022 for any original clinical studies assessing the STSF catheter for RFCA in AF patients. Meta-analysis with a random effects model was used for evidence synthesis. RESULTS: Pooled outcomes from 19 included studies indicated that STSF catheter was associated with a significantly shorter procedure time (weighted mean difference (WMD): -17.4 min, p<0.001), shorter ablation time (WMD: -6.6 min, p<0.001) and lower catheter irrigation fluid volume (WMD: -492.7 mL, p<0.001) than ST catheter. Pooled outcomes from four included studies with paroxysmal AF patients reported that using the STSF catheter for RFCA was associated with a significantly shorter ablation time (WMD: -5.7 min, p<0.001) and a lower risk of 1-year postablation arrhythmia recurrence (rate ratio: 0.504, p<0.001) than the SURROUNDFLOW (SF) catheter. Significant reductions in procedure time and ablation time associated with the STSF catheter were also reported in the other four studies using non-ST/SF catheters as the control. Overall complications of STSF catheter and control catheters were comparable. CONCLUSIONS: Using the STSF catheter was superior to using the ST catheter to conduct RFCA for AF by significantly reducing procedure time, ablation time, fluoroscopy time and irrigation fluid volume. The superiority of the STSF catheter over the SF catheter and other non-ST/SF catheters for RFCA needs further confirmation.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Fibrilação Atrial/etiologia , Resultado do Tratamento , Catéteres , Ablação por Cateter/métodos , Fatores de Tempo , Recidiva
4.
Mol Ther Nucleic Acids ; 27: 81-98, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34938608

RESUMO

Circular RNAs (circRNAs) have important potential in modulating vascular smooth muscle cell (VSMC) activity, but their roles in abdominal aortic aneurysm (AAA) are unknown. We performed in situ hybridization and immunohistochemistry and determined that circChordc1 (cysteine and histidine-rich domain containing 1) was markedly downregulated in aneurysm tissue compared with normal arteries. A gene gain and loss strategy was used to confirm that circChordc1 transformed VSMCs into a contracted phenotype and improved their growth, which significantly suppressed aneurysm formation and reduced the risk of rupture in mouse models of angiotensin (Ang) II- and CaCl2-induced AAA. RNA pull-down, immunoprecipitation, and immunoblotting indicated that circChordc1 facilitated the VSMC phenotype and growth determination by binding to vimentin and ANXA2 (annexin A2), which not only increased vimentin phosphorylation to promote its degradation but also promoted the interaction between ANXA2 and glycogen synthase kinase 3 beta (GSK3ß) to induce the nuclear entry of ß-catenin. Thus, our present study revealed that circChordc1 optimized the VSMC phenotype and improved their growth by inducing vimentin degradation and increasing the activity of the GSK3ß/ß-catenin pathway, thereby extenuating vascular wall remodeling and reversing pathological aneurysm progression.

5.
Theranostics ; 11(19): 9397-9414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646377

RESUMO

Rationale: Most current cardiac regeneration approaches result in very limited cell division and little new cardiomyocyte (CM) mass. Positive feedback loops are vital for cell division, but their role in CM regeneration remains unclear. We aimed to determine whether the lncRNA small nucleolar RNA host gene 1 Snhg1 (Snhg1) could form a positive feedback loop with c-Myc to induce cardiac regeneration. Methods: Quantitative PCR and in situ hybridization experiments were performed to determine the Snhg1 expression patterns in fetal and myocardial infarction (MI) hearts. Gain- and Loss-of-function assays were conducted to explore the effect of Snhg1 on cardiomyocyte (CM) proliferation and cardiac repair following MI. We further constructed CM-specific Snhg1 knockout mice to confirm the proliferative effect exerted by Snhg1 using CRISPR/Cas9 technology. RNA sequencing and RNA pulldown were performed to explore how Snhg1 mediated cardiac regeneration. Chromatin immunoprecipitation and luciferase reporter assays were used to demonstrate the positive feedback loop between Snhg1 and c-Myc. Results: Snhg1 expression was increased in human and mouse fetal and myocardial infarction (MI) hearts, particularly in CMs. Overexpression of Snhg1 promoted CM proliferation, angiogenesis, and inhibited CM apoptosis after myocardial infarction, which further improved post-MI cardiac function. Antagonism of Snhg1 in early postnatal mice inhibited CM proliferation and impaired cardiac repair after MI. Mechanistically, Snhg1 directly bound to phosphatase and tensin homolog (PTEN) and induced PTEN degradation, activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway to promote CM proliferation. The c-Myc protein, one of downstream targets of PI3K/AKT signaling, functioned as a transcription factor by binding to the promoter regions of Snhg1. Perturbation of the positive feedback between Snhg1 and c-Myc by mutation of the binding sequence significantly affected Snhg1-induced CM proliferation. Conclusions: Snhg1 effectively elicited CM proliferation and improved cardiac function post-MI by forming a positive feedback loop with c-Myc to sustain PI3K/Akt signaling activation, and thus may be a promising cardiac regeneration strategy in treating heart failure post-MI.


Assuntos
Infarto do Miocárdio/genética , RNA Longo não Codificante/metabolismo , Regeneração/fisiologia , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , China , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais/fisiologia
6.
Theranostics ; 9(19): 5558-5576, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534503

RESUMO

Objective: Long noncoding RNAs (lncRNAs) may serve as specific targets for the treatment of abdominal aortic aneurysms (AAAs). LncRNA GAS5, functionally associated with smooth muscle cell (SMC) apoptosis and proliferation, is likely involved in AAA formation, but the exact role of GAS5 in AAA is unknown. We thus explored the contribution of GAS5 to SMC-regulated AAA formation and its underlying mechanisms. Methods: Human specimens were used to verify the diverse expression of GAS5 in normal and AAA tissues. The angiotensin II (Ang II)-induced AAA model in ApoE-/- mice and the CaCl2-induced AAA model in wild-type C57BL/6 mice were used. RNA pull-down and luciferase reporter gene assays were performed in human aortic SMCs to detect the interaction between GAS5 and its downstream targets of protein or microRNA (miR). Results: GAS5 expression was significantly upregulated in human AAA specimens and two murine AAA models compared to human normal aortas and murine sham-operated controls. GAS5 overexpression induced SMC apoptosis and repressed its proliferation, thereby promoting AAA formation in two murine AAA models. Y-box-binding protein 1 (YBX1) was identified as a direct target of GAS5 while it also formed a positive feedback loop with GAS5 to regulate the downstream target p21. Furthermore, GAS5 acted as a miR-21 sponge to release phosphatase and tensin homolog from repression, which blocked the activation and phosphorylation of Akt to inhibit proliferation and promote apoptosis in SMCs. Conclusion: The LncRNA GAS5 contributes to SMC survival during AAA formation. Thus, GAS5 might serve as a novel target against AAA.


Assuntos
Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/parasitologia , Músculo Liso Vascular/citologia , RNA Longo não Codificante/metabolismo , Idoso , Animais , Aorta/metabolismo , Aneurisma da Aorta Abdominal/genética , Apolipoproteínas E/genética , Apoptose , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/genética
7.
Circulation ; 139(25): 2857-2876, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-30947518

RESUMO

BACKGROUND: circRNAs (circular RNAs) are emerging as powerful regulators of cardiac development and disease, but their roles in cardiac regeneration are still unknown. This study used superenhancers to distinguish key circRNAs in the regulation of cardiac regeneration and explored the mechanisms underlying circRNA functions. METHODS: We used integrated bioinformatics analysis of RNA sequencing data and superenhancer catalogs to identify superenhancer-associated circRNAs. Quantitative polymerase chain reactions and in situ hybridization were performed to determine the circRNA expression patterns in hearts. Gain- and loss-of-function assays were conducted to detect the role of circRNAs in cardiomyocyte proliferation and cardiac repair after myocardial infarction. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays were used to determine the binding of Meis1 (Meis homeobox 1) on circNfix-associated superenhancers. RNA pulldown and luciferase reporter assays were used to study circRNA interactions with proteins and miRNAs (micro RNAs). RESULTS: We identified a circRNA, Nfix circRNA (circNfix), that was regulated by a superenhancer and overexpressed in the adult heart in humans, rats, and mice. The transcription factor Meis1 bound to the superenhancer at the circNfix locus, and increased its expression. In vitro and in vivo, cardiomyocyte proliferation was increased by knockdown of circNfix, whereas it was inhibited by circNfix overexpression. Moreover, circNfix downregulation promoted cardiomyocyte proliferation and angiogenesis and inhibited cardiomyocyte apoptosis after myocardial infarction, attenuating cardiac dysfunction and improving the prognosis. Mechanistically, circNfix reinforced the interaction of Ybx1 (Y-box binding protein 1) with Nedd4l (an E3 ubiquitin ligase), and induced Ybx1 degradation through ubiquitination, repressing cyclin A2 and cyclin B1 expression. In addition, circNfix acted as a sponge for miR-214 to promote Gsk3ß (glycogen synthase kinase 3 ß) expression and repress ß-catenin activity. CONCLUSIONS: Loss of superenhancer-regulated circNfix promotes cardiac regenerative repair and functional recovery after myocardial infarction by suppressing Ybx1 ubiquitin-dependent degradation and increasing miR-214 activity and thus may be a promising strategy for improving the prognosis after MI.


Assuntos
Proliferação de Células , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , RNA Circular/metabolismo , Regeneração , Animais , Apoptose , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Meis1/genética , Proteína Meis1/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Neovascularização Fisiológica , RNA Circular/genética , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
8.
EBioMedicine ; 39: 69-82, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30545799

RESUMO

BACKGROUND: We previously found that loss of lncRNA-AZIN2 splice variant (AZIN2-sv) increases cardiomyocyte (CM) proliferation and attenuates adverse ventricular remodelling post-myocardial infarction (MI). However, whether inhibition of AZIN2-sv can simultaneously induce angiogenesis and thus improve prognosis after MI is unclear. METHODS: We used in situ hybridization and quantitative PCR to determine AZIN2-sv expression in endothelial cells. Knockdown and overexpression were performed to detect the role of AZIN2-sv in endothelial cell function, angiogenesis and prognosis after MI. RNA pulldown, RNA immunoprecipitation and luciferase reporter assays were used to determine the interaction with talin1 (Tln1) protein and miRNA-214 (miR-214). DNA pulldown and chromatin immunoprecipitation (ChIP) assays were used to study AZIN2-sv binding to upstream transcription factors. FINDINGS: AZIN2-sv was enriched in cardiac endothelial cells. The loss of AZIN2-sv reduced endothelial cell apoptosis and promoted endothelial sprouting and capillary network formation in vitro. Moreover, in vivo, the loss of AZIN2-sv induced angiogenesis and improved cardiac function after MI. Mechanistically, AZIN2-sv reduced Tln1 and integrin ß1 (ITGB1) protein levels to inhibit neovascularization. AZIN2-sv activated the ubiquitination-dependent degradation of Tln1 mediated by proteasome 26S subunit ATPase 5 (PSMC5). In addition, AZIN2-sv could bind to miR-214 and suppress the phosphatase and tensin homologue (PTEN)/Akt pathway to inhibit angiogenesis. With regard to the upstream mechanism, Bach1, a negative regulator of angiogenesis, bound to the promoter of AZIN2-sv and increased its expression. INTERPRETATION: Bach1-activated AZIN2-sv could participate in angiogenesis by promoting the PSMC5-mediated ubiquitination-dependent degradation of Tln1 and blocking the miR-214/PTEN/Akt pathway. Inhibition of AZIN2-sv induced angiogenesis and myocardial regeneration simultaneously, thus, AZIN2-sv could be an ideal therapeutic target for improving myocardial repair after MI. FUND: National Natural Science Foundations of China.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , MicroRNAs/genética , Infarto do Miocárdio/genética , Neovascularização Fisiológica , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Talina/genética , Processamento Alternativo , Animais , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Testes de Função Cardíaca , Células Endoteliais da Veia Umbilical Humana , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Talina/metabolismo
9.
J Exp Clin Cancer Res ; 37(1): 232, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231924

RESUMO

BACKGROUND: Multidrug resistance (MDR) is often responsible for the failure of chemotherapy treatment, and current strategies for cancer MDR are not adequately satisfying as to their efficacy and safety. In this study, we sought to determine the anti-MDR effects of ultrasound (US) irradiation and its underlying mechanisms against drug-resistance. METHODS: MDR variant MCF-7/ADR cell lines and endothelial cell lines were used to determine the appropriate ultrasound intensity for in vitro experiments. MCF-7/ADR cell and HEPG2/ADM cells were used to assess the anti-MDR effect of US irradiation. Intracellular adriamycin (ADM) accumulation, Cell viability, cell proliferation and cell apoptosis were evaluated after ADM + US treatment or ADM treatment alone. MCF-7/ADR xenograft mice were used to investigate the appropriate ultrasound intensity for in vivo experiments and its effect on the long-term prognosis. Underlining mechanisms by which ultrasound exposure reversing MDR phenotype were investigated both in vitro and in vivo. RESULTS: Combination of ADM and 0.74 W/cm2 US irradiation enhanced ADM intracellular concentration and nuclear accumulation in MCF-7/ADR and HEPG2/ADM cells, compared to those treated with ADM alone. Enhanced cellular ADM uptake and nuclei localization was associated with increased cytotoxicity of ADM to ADM-resistant cells, lower ADM-resistant cell viability and proliferative cell ratio, and higher apoptotic cell ratio. More importantly, US exposure increased the effectiveness of ADM to inhibit tumor growth in MCF-7/ADR xenograft mice. Mechanistically, US exposure promoted ADM accumulation in MDR cells mainly through down-regulation of P-glycoprotein (P-gp), which is dependent on US-induced intracellular reactive oxygen species (ROS) production. US-induced oxidative stress promoted miR-200c-3p and miR-34a-3p expression by forming miR-200c/34a/ZEB1 double-negative feedback loop. Finally, US-induced miR-200c/34a overexpression decreased P-gp expression and reversed MDR phenotype. CONCLUSION: US irradiation could reverse MDR phenotype by activating ROS-ZEB1-miR200c/34a-P-gp signal pathway. Our findings offer a new and promising strategy for sensitizing cells to combat MDR and to improve the therapeutic index of chemotherapy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , MicroRNAs/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Doxorrubicina/administração & dosagem , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/efeitos da radiação , Ondas Ultrassônicas/efeitos adversos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cardiovasc Res ; 114(12): 1642-1655, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29584819

RESUMO

Aims: Long noncoding RNAs (lncRNAs) are critical regulators of cardiovascular lineage commitment and heart wall development, but their roles in regulating endogenous cardiac regeneration are unclear. The present study investigated the role of human-derived lncRNA in regulating endogenous cardiac regeneration as well as the underlying mechanisms. Methods and results: We compared RNA sequencing data from human foetal and adult hearts and identified a novel lncRNA that was upregulated in adult hearts (Genesymbol NONHSAG000971/NONHSAT002258 or ENST00000497710.5), which was a splice variant of the AZIN2 gene (AZIN2-sv). We used quantitative PCR to confirm the increased expression of AZIN2-sv in adult rat hearts. Coexpression network analysis indicated that AZIN2-sv could regulate proliferation. Loss- and gain-of-function approaches demonstrated that AZIN2-sv negatively regulated endogenous cardiomyocyte proliferation in vitro and in vivo. Knockdown of AZIN2-sv attenuated ventricular remodelling and improved cardiac function after myocardial infarction. Phosphatase and tensin homolog (PTEN) was identified as a target of AZIN2-sv, their direct binding increased PTEN stability. Furthermore, AZIN2-sv acted as a microRNA-214 sponge to release PTEN, which blocked activation of the PI3 kinase/Akt pathway to inhibit cardiomyocyte proliferation. Conclusions: The newly discovered AZIN2-sv suppressed endogenous cardiac regeneration by targeting the PTEN/Akt pathway. Thus, AZIN2-sv may be a novel therapeutic target for preventing and treating heart failure.


Assuntos
Carboxiliases/deficiência , Proliferação de Células , Fibroblastos/enzimologia , Infarto do Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , RNA Longo não Codificante/metabolismo , Regeneração , Animais , Animais Recém-Nascidos , Carboxiliases/genética , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , PTEN Fosfo-Hidrolase/metabolismo , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Transdução de Sinais , Função Ventricular Esquerda , Remodelação Ventricular
11.
J Am Heart Assoc ; 7(21): e009700, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30608184

RESUMO

Background Antisense long noncoding RNAs (lnc RNA s) are single-stranded RNA s that overlapped gene-coding regions on the opposite DNA strand and play as critical regulators in cardiovascular diseases. The high conservation and stability may be good advantages for antisense lnc RNA s. However, the roles of antisense lnc RNA s in cardiomyocyte proliferation and cardiac regeneration are still unknown. Methods and Results In this study, we found that Silent information regulator factor 2 related enzyme 1 (Sirt1) antisense lnc RNA expression was significantly increased during heart development. By gain and loss function of Sirt1 antisense lnc RNA using adenovirus and locked nucleic acid, respectively, we demonstrated that Sirt1 antisense lnc RNA promoted cardiomyocyte proliferation in vitro and in vivo, and the suppression of Sirt1 antisense lnc RNA inhibited cardiomyocyte proliferation. Moreover, overexpression of Sirt1 antisense lnc RNA enhanced cardiomyocyte proliferation, attenuated cardiomyocyte apoptosis, improved cardiac function, and decreased mortality rate after myocardial infarction. Furthermore, Sirt1 antisense lnc RNA can bind the Sirt1 3'-untranslated region, enhancing the stability of Sirt1 and increasing Sirt1 abundance at both the mRNA and protein levels. Finally, we found that Sirt1 was involved in Sirt1 antisense lnc RNA -induced cardiomyocyte proliferation. Conclusions The present study identified Sirt1 antisense lnc RNA as a novel regulator of cardiomyocyte proliferation and cardiac regeneration by interacting and stabilizing Sirt1 mRNA , which may serve as an effective gene target for preventing myocardial infarction.


Assuntos
Proliferação de Células , Miócitos Cardíacos/citologia , RNA Antissenso/fisiologia , RNA Longo não Codificante/fisiologia , Sirtuína 1/genética , Sirtuína 1/fisiologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL
12.
Oncol Lett ; 13(4): 2274-2280, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28454391

RESUMO

Kin17 DNA and RNA binding protein (Kin17) is a highly conserved protein that participates in DNA replication, DNA repair and cell cycle progression. Recently, the tumor-promoting function of Kin17 has been demonstrated and increasingly studied. In the present study, the role of Kin17 in the invasion and metastasis of non-small cells lung cancer (NSCLC) was investigated. Elevated Kin17 mRNA and protein expression was identified in a total of 97 NSCLC and benign lung lesion tissue specimens. Kin17 overexpression was significantly correlated with high tumor grade and lymph node metastasis, indicating poor patient prognosis. Scratch and Transwell assays demonstrated that the knockdown of KIN17 inhibited the ability of NSCLC cells to migrate and invade. Furthermore, reverse transcription-quantitative polymerase chain reaction and western blot analyses confirmed that knockdown of KIN17 decreased the expression of matrix metalloproteinase 7, epidermal growth factor receptor and v-myc avian myelocytomatosis viral oncogene homolog. The results of the present study indicate that Kin17 is markedly overexpressed in NSCLC tissues compared with benign lung lesion and peritumoral tissue. The upregulation of KIN17 may serve an important role in the metastasis of NSCLC cells. These results indicate that Kin17 is a novel diagnostic and prognostic biomarker of NSCLC, in addition to being a potential therapeutic target for the treatment of patients with NSCLC.

13.
Int J Gynecol Cancer ; 27(4): 628-633, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28346239

RESUMO

BACKGROUND: Cervical cancer is one of the most common cancers in women worldwide. Emerging evidence suggests that kin17 is a tumor-promoting protein in some types of solid tumors. However, whether kin17 contributes to cervical cancer carcinogenesis remains unknown. METHODS: Kin17 expression in clinical samples from Guangdong Women and Children's Hospital and Health Institute was detected by immunohistochemical staining. A series of functional experiments including 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, 5-bromo-2'-deoxyuridine assay, colony formation, transwell assay, flow cytometry of apoptosis, and cell cycle were performed to explore the roles of kin17 in cervical cancer cells HeLa. RESULTS: In this study, we showed for the first time that the expression of kin17 was significantly increased in clinical cervical cancer samples, and associated with tumor differentiation, lymph node metastasis, and ki-67 expression in a clinicopathologic characteristics review. Furthermore, silence of kin17 in HeLa cells inhibited cell proliferation, clone formation, cell cycle progression, migration, and invasion, and also promoted cell apoptosis. CONCLUSION: Our findings demonstrate that kin17 is closely related to the cell proliferation and invasion of cervical cancer and could be a novel diagnostic and therapeutic target for cervical cancer management. The underlying mechanisms should be elucidated in future research.


Assuntos
Biomarcadores Tumorais/biossíntese , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a RNA/biossíntese , Neoplasias do Colo do Útero/metabolismo , Adulto , Apoptose/fisiologia , Biomarcadores Tumorais/genética , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/genética , Feminino , Células HeLa , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Ligação a RNA/genética , Transfecção , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/metabolismo , Displasia do Colo do Útero/patologia
14.
Int J Mol Epidemiol Genet ; 7(3): 115-125, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27766138

RESUMO

Important in angiogenesis, vascular endothelial growth factor (VEGF) acts as a biomarker in the growth of and prognosis for breast cancer. Evidence suggests that single nucleotide polymorphisms of VEGF such as +936C/T (rs3025039) effects VEGF levels; however, current studies on the association between +936C/T and breast cancer risk are inconsistent. This meta-analysis was conducted to reach a more precise conclusion about this association. PubMed was searched for case-control studies on the association between +936C/T levels and breast cancer risk. The quality of each study was scoring in term of some important criteria. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of this association. Subgroup analysis stratified by ethnicity and quality score was also conducted. Eighteen studies with 10,694 cases and 11,199 controls in accord with the selection criteria were included in our meta-analysis. When all eligible studies were pooled, our meta-analysis showed that there was no significant association between +936C/T and breast cancer risk in the all ethnic group; however, in the subgroup analysis, we found that +936C/T was associated with reduced breast cancer risk in the Asian population. When stratified by the quality score, no significant association was found between +936C/T and breast cancer risk either in studies scored <8 or studies scored >7. Our findings suggested that +936C/T is not associated with breast cancer risk but may reduce the risk in the Asian population.

15.
Genet Test Mol Biomarkers ; 20(7): 359-66, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27227554

RESUMO

OBJECTIVE: To assess the relationship between the ataxia telangiectasia mutated (ATM) gene-111 (G>A) polymorphism and cancer risk. METHODS: The PubMed, EMBASE, Web of Science, and China National Knowledge Infrastructure databases were searched comprehensively. A total of 16 case-control studies with 12,273 cases and 13,046 controls were included in this meta-analysis; 12 of them were from the Chinese population. Five studies assessed smoking effects, including 3038 smokers and 1003 nonsmokers. Odds ratio (OR) was determined by using a genetic model-free approach. Heterogeneity was quantified by I(2) statistics. Publication bias was also evaluated. RESULTS: The recessive model (AA vs. AG + GG) was suggested as the most appropriate genetic model. After elimination of heterogeneity, it was found that the ATM-111 (G>A) AA genotype is significantly associated with increased susceptibility to overall cancer risk in a fixed effects model (OR = 1.09; 95% CI = 1.03-1.15; p < 0.01; I(2) < 0.01). In the subgroup analysis, the result of pooled analyses among the Chinese population revealed similar associations (OR = 1.12; 95% CI = 1.04-1.22; p < 0.01; I(2) < 0.01). As for specific cancer analysis, an increase was correlated with lung cancer risk (OR = 1.12; 95% CI = 1.01-1.24; p = 0.03) and breast cancer risk (OR = 1.08; 95% CI = 1.00-1.16; p = 0.05). In addition, a stronger association was found among nonsmokers (OR = 1.31; 95% CI = 1.13-1.52; p < 0.01). CONCLUSION: This meta-analysis suggests that AA genotype of the ATM-111 gene (G>A) may be a risk factor for breast cancer and lung cancer, especially among nonsmokers, within the Chinese population.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias/genética , Povo Asiático/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Estudos de Casos e Controles , China , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Neoplasias/diagnóstico , Razão de Chances , Polimorfismo de Nucleotídeo Único , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA