Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Adv Sci (Weinh) ; 10(23): e2300644, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316966

RESUMO

Chronic hepatitis C virus (HCV) infection is an important public health issue. However, knowledge on how the virus remodels the metabolic and immune response toward hepatic pathologic environment is limited. The transcriptomic and multiple evidences reveal that the HCV core protein-intestine-specific homeobox (ISX) axis promotes a spectrum of metabolic, fibrogenic, and immune modulators (e.g., kynurenine, PD-L1, and B7-2), regulating HCV-infection relevant pathogenic phenotype in vitro and in vivo. In a transgenic mice model, the HCV core protein-ISX axis enhance metabolic disturbance (particularly lipid and glucose metabolism) and immune suppression, and finally, chronic liver fibrosis in a high-fat diet (HFD)-induced disease model. Mechanistically, cells with HCV JFH-1 replicons upregulate ISX and, consequently, the expressions of metabolic, fibrosis progenitor, and immune modulators via core protein-induced nuclear factor-κB signaling. Conversely, cells with specific ISX shRNAi inhibit HCV core protein-induced metabolic disturbance and immune suppression. Clinically, the HCV core level is significantly correlated with ISX, IDOs, PD-L1, and B7-2 levels in HCC patients with HCV infection. Therefore, it highlights the significance of HCV core protein-ISX axis as an important mechanism in the development of HCV-induced chronic liver disease and can be a specific therapeutic target clinically.


Assuntos
Carcinoma Hepatocelular , Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Camundongos , Animais , Hepatite C Crônica/metabolismo , Hepatite C Crônica/patologia , Antígeno B7-H1/metabolismo , Hepatite C/metabolismo , Camundongos Transgênicos , Progressão da Doença
2.
Front Bioeng Biotechnol ; 11: 1182080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214308

RESUMO

Magnolol is a chemically defined and active polyphenol extracted from magnolia plants possessing anti-allergic activity, but its low solubility and rapid metabolism dramatically hinder its clinical application. To improve the therapeutic effects, magnolol-encapsulated polymeric poly (DL-lactide-co-glycolide)-poly (ethylene glycol) (PLGA-PEG) nanoparticles were constructed and characterized. The prophylactic and therapeutic efficacy in a chronic murine model of OVA-induced asthma and the mechanisms were investigated. The results showed that administration of magnolol-loaded PLGA-PEG nanoparticles significantly reduced airway hyperresponsiveness, lung tissue eosinophil infiltration, and levels of IL-4, IL-13, TGF-ß1, IL-17A, and allergen-specific IgE and IgG1 in OVA-exposed mice compared to their empty nanoparticles-treated mouse counterparts. Magnolol-loaded PLGA-PEG nanoparticles also significantly prevented mouse chronic allergic airway mucus overproduction and collagen deposition. Moreover, magnolol-encapsulated PLGA-PEG nanoparticles showed better therapeutic effects on suppressing allergen-induced airway hyperactivity, airway eosinophilic inflammation, airway collagen deposition, and airway mucus hypersecretion, as compared with magnolol-encapsulated poly (lactic-co-glycolic acid) (PLGA) nanoparticles or magnolol alone. These data demonstrate the protective effect of magnolol-loaded PLGA-PEG nanoparticles against the development of allergic phenotypes, implicating its potential usefulness for the asthma treatment.

3.
Sci Rep ; 13(1): 6677, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095178

RESUMO

Malignant pleural effusions (MPE) commonly result from malignant tumors and represent advanced-stage cancers. Thus, in clinical practice, early recognition of MPE is valuable. However, the current diagnosis of MPE is based on pleural fluid cytology or histologic analysis of pleural biopsies with a low diagnostic rate. This research aimed to assess the diagnostic ability of eight previously identified Non-Small Cell Lung Cancer (NSCLC)-associated genes for MPE. In the study, eighty-two individuals with pleural effusion were recruited. There were thirty-three patients with MPE and forty-nine patients with benign transudate. mRNA was isolated from the pleural effusion and amplified by Quantitative real-time PCR. The logistic models were further applied to evaluate the diagnostic performance of those genes. Four significant MPE-associated genes were discovered in our study, including Dual-specificity phosphatase 6 (DUSP6), MDM2 proto-oncogene (MDM2), Ring finger protein 4 (RNF4), and WEE1 G2 Checkpoint Kinase (WEE1). Pleural effusion with higher expression levels of MDM2 and WEE1 and lower expression levels of RNF4 and DUSP6 had a higher possibility of being MPE. The four-gene model had an excellent performance distinguishing MPE and benign pleural effusion, especially for pathologically negative effusions. Therefore, the gene combination is a suitable candidate for MPE screening in patients with pleural effusion. We also identified three survival-associated genes, WEE1, Neurofibromin 1 (NF1), and DNA polymerase delta interacting protein 2 (POLDIP2), which could predict the overall survival of patients with MPE.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Derrame Pleural Maligno , Derrame Pleural , Humanos , Derrame Pleural Maligno/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais/metabolismo , Curva ROC , Derrame Pleural/patologia , Proteínas Nucleares , Fatores de Transcrição
4.
Environ Health Perspect ; 131(3): 37014, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36975775

RESUMO

BACKGROUND: Ambient particulate matter with an aerodynamic diameter of ≤2.5 µm (PM2.5) is suggested to act as an adjuvant for allergen-mediated sensitization and recent evidence suggests the importance of T follicular helper (Tfh) cells in allergic diseases. However, the impact of PM2.5 exposure and its absorbed polycyclic aromatic hydrocarbon (PAHs) on Tfh cells and humoral immunity remains unknown. OBJECTIVES: We aimed to explore the impact of environmental PM2.5 and indeno[1,2,3-cd]pyrene (IP), a prominent PAH, as a model, on Tfh cells and the subsequent pulmonary allergic responses. METHODS: PM2.5- or IP-mediated remodeling of cellular composition in lung lymph nodes (LNs) was determined by mass cytometry in a house dust mite (HDM)-induced mouse allergic lung inflammation model. The differentiation and function of Tfh cells in vitro were analyzed by flow cytometry, quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, chromatin immunoprecipitation, immunoprecipitation, and western blot analyses. RESULTS: Mice exposed to PM2.5 during the HDM sensitization period demonstrated immune cell population shifts in lung LNs as compared with those sensitized with HDM alone, with a greater number of differentiated Tfh2 cells, enhanced allergen-induced immunoglobulin E (IgE) response and pulmonary inflammation. Similarly enhanced phenotypes were also found in mice exposed to IP and sensitized with HDM. Further, IP administration was found to induce interleukin-21 (Il21) and Il4 expression and enhance Tfh2 cell differentiation in vitro, a finding which was abrogated in aryl hydrocarbon receptor (AhR)-deficient CD4+ T cells. Moreover, we showed that IP exposure increased the interaction of AhR and cellular musculoaponeurotic fibrosarcoma (c-Maf) and its occupancy on the Il21 and Il4 promoters in differentiated Tfh2 cells. DISCUSSION: These findings suggest that the PM2.5 (IP)-AhR-c-Maf axis in Tfh2 cells was important in allergen sensitization and lung inflammation, thus adding a new dimension in the understanding of Tfh2 cell differentiation and function and providing a basis for establishing the environment-disease causal relationship. https://doi.org/10.1289/EHP11580.


Assuntos
Hipersensibilidade , Pneumonia , Camundongos , Animais , Interleucina-4 , Pulmão/patologia , Hipersensibilidade/genética , Hipersensibilidade/patologia , Modelos Animais de Doenças , Pneumonia/induzido quimicamente , Alérgenos/toxicidade , Linfonodos/patologia , Pyroglyphidae , Pirenos
5.
Int Immunopharmacol ; 115: 109653, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587502

RESUMO

Obesity is associated with multiple comorbidities, such as metabolic abnormalities and cognitive dysfunction. Moreover, accumulating evidence indicates that neurodegenerative disorders are associated with chronic neuroinflammation. GLP-1 receptor agonists (RAs) have been extensively studied as a treatment for type 2 diabetes. Emerging evidence has demonstrated a protective effect of GLP-1 RAs on neurodegenerative disease, which is independent of its glucose-lowering effects. In this study, we aimed to examine the effects of a long-acting GLP-1 RA, exenatide, on high-fat diet (HFD)-induced neuroinflammation and related brain function impairment. First, mice treated with exenatide exhibited significantly reduced HFD-increased body weight and blood glucose. In an open field test, exenatide treatment ameliorated the reduction in local motor activity and anxiety in HFD-fed mice. Moreover, HFD induced astrogliosis, microgliosis, and upregulation of IL-1ß, IL-6 and TNF-α in hippocampus and cortex. Exenatide treatment reduced HFD-induced astrogliosis and IL-1ß and TNF-α expressions. Moreover, exenatide increased phosphor-ERK and M2-type microglia marker arginase-1 expression in the hippocampus and cortex. In addition, we found that scavenger receptor-A4 protein expression was induced by HFD and was subsequently inhibited by exenatide. SR-A4 knockout reversed the locomotor activity impairment but not the anxiety behavior caused by HFD consumption. SR-A4 knockout also reduced HFD-induced neuroinflammation, as shown by the reduced expression of GFAP and IBA-1 compared with that in wild-type control mice. These results demonstrate that exenatide decreases HFD-increased neuroinflammation and promotes anti-inflammatory M2 differentiation. The inhibition of SR-A4 by exenatide exerts anti-inflammatory activity.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Neurodegenerativas , Camundongos , Animais , Exenatida/farmacologia , Exenatida/uso terapêutico , Microglia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Doenças Neuroinflamatórias , Regulação para Baixo , Diabetes Mellitus Tipo 2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neurodegenerativas/metabolismo , Gliose , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Locomoção , Ansiedade/tratamento farmacológico , Camundongos Endogâmicos C57BL
6.
Cell Biol Toxicol ; 39(4): 1471-1487, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35687267

RESUMO

B-cell precursor acute lymphoblastic leukemia (BCP-ALL), the most common childhood cancer, originates from lymphoid precursor cells in bone marrow committed to the B-cell lineage. Environmental factors and genetic abnormalities disturb the normal maturation of these precursor cells, promoting the formation of leukemia cells and suppressing normal hematopoiesis. The underlying mechanisms of progression are unclear, but BCP-ALL incidence seems to be increasing in parallel with the adoption of modern lifestyles. This study hypothesized that air pollution and haze are risk factors for BCP-ALL progression. The current study revealed that indeno(1,2,3-cd)pyrene (IP), a major component of polycyclic aromatic hydrocarbons (PAHs) in air, promotes oncogenic activities (proliferation, transformation, and disease relapse) in vitro and in vivo. Mechanistically, IP treatment activated the aryl hydrocarbon receptor (AHR)-indoleamine-2,3-dioxygenase (IDOs) axis, thereby enhancing tryptophan metabolism and kynurenine (KYN) level and consequent promoting the KYN-AHR feedback loop. IP treatment decreased the time to disease relapse and increased the BCP-ALL cell count in an orthotopic xenograft mouse model. Additionally, in 50 clinical BCP-ALL samples, AHR and IDO were co-expressed in a disease-specific manner at mRNA and protein levels, while their mRNA levels showed a significant correlation with disease-free survival duration. These results indicated that PAH/IP exposure promotes BCP-ALL disease progression.


Assuntos
Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Camundongos , Animais , Cinurenina/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
7.
Respir Med ; 206: 107089, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542961

RESUMO

BACKGROUND: There are knowledge gaps in the potential role of Club cell 16-kDa secretory protein (CC16) in severe asthma phenotypes and type 2 inflammation, as well as the longitudinal effect of CC16 on pulmonary function tests and exacerbation risk in epidemiological studies. OBJECTIVE AND METHODS: To assess whether serum CC16 is associated with eosinophilic inflammation in patients with severe asthma. We also examined the effect of this protein on the annual decline in forced expiratory volume in the first second (FEV1) and the risk of exacerbation using a longitudinal approach. We recruited 127 patients with severe asthma from 30 hospitals/pulmonary clinics in Hokkaido, Japan. The least square means and standard error were calculated for T-helper 2 (Th2) biomarkers and pulmonary function test across CC16 tertiles at baseline. We did the same for asthma exacerbation and annual decline in FEV1 with 3 and 5 years' follow-up, respectively. RESULTS: We found that serum CC16 was inversely associated with sputum eosinophils and blood periostin in a dose-response manner. Baseline CC16 and FEV1/forced vital capacity ratio were positively associated in adjusted models (p for trend = 0.008). Patients with the lowest tertile of serum CC16 levels at baseline had a -14.3 mL decline in FEV1 than those with the highest tertile over 5 years of follow-up (p for trend = 0.031, fully adjusted model). We did not find any association of CC16 with exacerbation risk. CONCLUSION: Patients with severe asthma with lower circulatory CC16 had enhanced eosinophilic inflammation with rapid FEV1 decline over time.


Assuntos
Asma , Eosinofilia , Humanos , Pulmão , Volume Expiratório Forçado , Eosinófilos , Eosinofilia/complicações , Inflamação
8.
Gut Microbes ; 14(1): 2130650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36206406

RESUMO

Helicobacter pylori infection is associated with the development of several gastric diseases including gastric cancer. To reach a long-term colonization in the host stomach, H. pylori employs multiple outer membrane adhesins for binding to the gastric mucosa. However, due to the redundancy of adhesins that complement the adhesive function of bacteria, targeting each individual adhesin alone usually achieves nonideal outcomes for preventing bacterial adhesion. Here, we report that key adhesins AlpA/B and BabA/B in H. pylori are modified by glycans and display a two-step molecular weight upshift pattern from the cytoplasm to the inner membrane and from the inner membrane to the outer membrane. Nevertheless, this upshift pattern is missing when the expression of some enzymes related to lipopolysaccharide (LPS) biosynthesis, including the LPS O-antigen assembly and ligation enzymes WecA, Wzk, and WaaL, is disrupted, indicating that the underlying mechanisms and the involved enzymes for the adhesin glycosylation are partially shared with the LPS biosynthesis. Loss of the adhesin glycosylation not only reduces the protease resistance and the stability of the tested adhesins but also changes the adhesin-binding ability. In addition, mutations in the LPS biosynthesis cause a significant reduction in bacterial adhesion in the in vitro cell-line model. The current findings reveal that H. pylori employs a general protein glycosylation system related to LPS biosynthesis for adhesin modification and its biological significance. The enzymes required for adhesin glycosylation rather than the adhesins themselves are potentially better drug targets for preventing or treating H. pylori infection.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Glicosilação , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Lipopolissacarídeos/metabolismo , Antígenos O/metabolismo , Peptídeo Hidrolases/metabolismo
9.
Front Immunol ; 13: 1099509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776398

RESUMO

Background: Metal components of environmental PM2.5 are associated with the exacerbation of allergic diseases like asthma. In our recent hospital-based population study, exposure to vanadium is shown to pose a significant risk for current asthma, but the causal relationship and its underlying molecular mechanisms remain unclear. Objective: We sought to determine whether vanadium co-exposure can aggravate house dust mite (HDM)-induced allergic airway inflammation and remodeling, as well as investigate its related mechanisms. Methods: Asthma mouse model was generated by using either vanadium pentoxide (V2O5) or HDM alone or in combination, in which the airway inflammation and remodeling was investigated. The effect of V2O5 co-exposure on HDM-induced epithelial-derived cytokine release and oxidative stress (ROS) generation was also examined by in vitro analyses. The role of ROS in V2O5 co-exposure-induced cytokine release and airway inflammation and remodeling was examined by using inhibitors or antioxidant. Results: Compared to HDM alone, V2O5 co-exposure exacerbated HDM-induced airway inflammation with increased infiltration of inflammatory cells and elevated levels of Th1/Th2/Th17 and epithelial-derived (IL-25, TSLP) cytokines in the bronchoalveolar lavage fluids (BALFs). Intriguingly, V2O5 co-exposure also potentiated HDM-induced airway remodeling. Increased cytokine release was further supported by in vitro analysis in human bronchial epithelial cells (HBECs). Mechanistically, ROS, particularly mitochondrial-derived ROS, was significantly enhanced in HBECs after V2O5 co-exposure as compared to HDM challenge alone. Inhibition of ROS with its inhibitor N-acetyl-L-cysteine (NAC) and mitochondrial-targeted antioxidant MitoTEMPO blocked the increased epithelial release caused by V2O5 co-exposure. Furthermore, vitamin D3 as an antioxidant was found to inhibit V2O5 co-exposure-induced increased airway epithelial cytokine release and airway remodeling. Conclusions: Our findings suggest that vanadium co-exposure exacerbates epithelial ROS generation that contribute to increased allergic airway inflammation and remodeling.


Assuntos
Asma , Vanádio , Animais , Camundongos , Humanos , Vanádio/toxicidade , Espécies Reativas de Oxigênio , Remodelação das Vias Aéreas , Antioxidantes/farmacologia , Asma/etiologia , Citocinas/metabolismo , Inflamação/complicações , Pyroglyphidae , Dermatophagoides pteronyssinus , Estresse Oxidativo
10.
Cancer Lett ; 520: 160-171, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265398

RESUMO

Nuclear translocation regulated by phosphorylation is a key step in providing activated mitogen-activated protein kinases (MAPKs) access to their nuclear targets; however, the mechanisms linking MAPK-induced nuclear translocation and target gene expression mediating oncologic activity remain obscure. Here, we show that the MAPK extracellular signal-regulated kinase (ERK) 1, but not ERK2, phosphorylated intestine-specific homeobox (ISX), leading to its nuclear translocation and downstream oncogenic signaling. Mechanistically, ERK1 phosphorylated serine 183 of ISX, facilitating its nuclear translocation and downstream target gene expression. In contrast, dominant-negative ERK1 expression in hepatoma cells inhibited the nuclear translocation of ISX and the expression of downstream genes involved in cell proliferation, malignant transformation, and epithelial-mesenchymal transition in vitro and in vivo. An activating mutation in ISX (S183D) exhibited a constitutive nuclear localization and resistance to sorafenib. Additionally, in 576 paired clinical hepatocellular carcinoma (HCC) samples and adjacent normal tissues, ERK1 and ISX were co-expressed in a tumor-specific manner at mRNA and protein levels, while their mRNA levels showed significant correlation with survival duration, tumor size, number, and stage. These results highlight the significance of ERK1/ISX signaling in HCC progression and its potential as a prognostic and therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Homeodomínio/genética , Neoplasias Hepáticas/tratamento farmacológico , Proteína Quinase 3 Ativada por Mitógeno/genética , Fatores de Transcrição/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Intestinos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia
11.
Talanta ; 233: 122464, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215101

RESUMO

Medium- and long-chain fatty acids (MLFAs) are essential energy sources in cells and possess vital biological functions. Characteristics of MLFAs in biosamples contributes to the understanding of biological process and finding potential biomarkers for relevant diseases. However, there are obstacles of the MLFAs determination due to their poor ionization efficiency in mass spectrometry and structural similarity of the MLFAs. Herein, a derivatization strategy was applied by labeling with d0-N, N-dimethyl-6,7-dihydro-5H-pyrrolo [3,4-d] pyrimidine-2-amine (d0-DHPP) and detecting with ultra-high performance liquid chromatography combined with tandem mass spectrometry (UHPLC-MS/MS) in multiple reaction monitoring (MRM) mode. The parallel isotope labeled internal standards were generated by tagging d6-DHPP to MLFAs. The simple and rapid derivatization procedure and mild reaction conditions greatly reduced the potential of MLFA degradation during the processing procedure. With the methodology, the chromatographic performance was greatly improved, and the mass spectrum response was enhanced up to 1, 600 folds. Finally, the developed derivatization method was applied to serum samples to analyze the alteration of MLFAs induced by 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) exposure in breast cancer nude mice. The semi-quantitative results demonstrated that the BDE-47 exposure significantly influenced the MLFA metabolism in mice.


Assuntos
Ácidos Graxos , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão , Isótopos , Camundongos , Camundongos Nus
12.
Front Immunol ; 12: 643260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936062

RESUMO

We have previously demonstrated that benzo(a)pyrene (BaP) co-exposure with dermatophagoides group 1 allergen (Der f 1) can potentiate Der f 1-induced airway inflammation. The underlying mechanism, however, remains undetermined. Here we investigated the molecular mechanisms underlying the potentiation of BaP exposure on Der f 1-induced airway inflammation in asthma. We found that BaP co-exposure potentiated Der f 1-induced TGFß1 secretion and signaling activation in human bronchial epithelial cells (HBECs) and the airways of asthma mouse model. Moreover, BaP exposure alone or co-exposure with Der f 1-induced aryl hydrocarbon receptor (AhR) activity was determined by using an AhR-dioxin-responsive element reporter plasmid. The BaP and Der f 1 co-exposure-induced TGFß1 expression and signaling activation were attenuated by either AhR antagonist CH223191 or AhR knockdown in HBECs. Furthermore, AhR knockdown led to the reduction of BaP and Der f 1 co-exposure-induced active RhoA. Inhibition of RhoA signaling with fasudil, a RhoA/ROCK inhibitor, suppressed BaP and Der f 1 co-exposure-induced TGFß1 expression and signaling activation. This was further confirmed in HBECs expressing constitutively active RhoA (RhoA-L63) or dominant-negative RhoA (RhoA-N19). Luciferase reporter assays showed prominently increased promoter activities for the AhR binding sites in the promoter region of RhoA. Inhibition of RhoA suppressed BaP and Der f 1 co-exposure-induced airway hyper-responsiveness, Th2-associated airway inflammation, and TGFß1 signaling activation in asthma. Our studies reveal a previously unidentified functional axis of AhR-RhoA in regulating TGFß1 expression and signaling activation, representing a potential therapeutic target for allergic asthma.


Assuntos
Antígenos de Dermatophagoides/toxicidade , Proteínas de Artrópodes/toxicidade , Asma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Benzo(a)pireno/toxicidade , Cisteína Endopeptidases/toxicidade , Receptores de Hidrocarboneto Arílico/imunologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/imunologia , Proteína rhoA de Ligação ao GTP/imunologia , Animais , Asma/induzido quimicamente , Asma/imunologia , Asma/patologia , Feminino , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
13.
Int J Mol Sci ; 22(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920443

RESUMO

Helicobacter pylori infection is the etiology of several gastric-related diseases including gastric cancer. Cytotoxin associated gene A (CagA), vacuolating cytotoxin A (VacA) and α-subunit of urease (UreA) are three major virulence factors of H. pylori, and each of them has a distinct entry pathway and pathogenic mechanism during bacterial infection. H. pylori can shed outer membrane vesicles (OMVs). Therefore, it would be interesting to explore the production kinetics of H. pylori OMVs and its connection with the entry of key virulence factors into host cells. Here, we isolated OMVs from H. pylori 26,695 strain and characterized their properties and interaction kinetics with human gastric adenocarcinoma (AGS) cells. We found that the generation of OMVs and the presence of CagA, VacA and UreA in OMVs were a lasting event throughout different phases of bacterial growth. H. pylori OMVs entered AGS cells mainly through macropinocytosis/phagocytosis. Furthermore, CagA, VacA and UreA could enter AGS cells via OMVs and the treatment with H. pylori OMVs would cause cell death. Comparison of H. pylori 26,695 and clinical strains suggested that the production and characteristics of OMVs are not only limited to laboratory strains commonly in use, but a general phenomenon to most H. pylori strains.


Assuntos
Adenocarcinoma/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Micropartículas Derivadas de Células/metabolismo , Helicobacter pylori , Neoplasias Gástricas/metabolismo , Fatores de Virulência/metabolismo , Adenocarcinoma/microbiologia , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Humanos , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
14.
Autophagy ; 17(12): 4202-4217, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33853474

RESUMO

We propose that beyond its role in WNT secretion, WLS/GPR177 (wntless, WNT ligand secretion mediator) acts as an essential regulator controlling protein glycosylation, endoplasmic reticulum (ER) homeostasis, and dendritic cell (DC)-mediated immunity. WLS deficiency in bone marrow-derived DCs (BMDCs) resulted in poor growth and an inability to mount cytokine and T-cell responses in vitro, phenotypes that were irreversible by the addition of exogenous WNTs. In fact, WLS was discovered to integrate a protein complex in N-glycan-dependent and WLS domain-selective manners, comprising ER stress sensors and lectin chaperones. WLS deficiency in BMDCs led to increased ER stress response and macroautophagy/autophagy, decreased calcium efflux from the ER, and the loss of CALR (calreticulin)-CANX (calnexin) cycle, and hence protein hypo-glycosylation. Consequently, DC-specific wls-null mice were unable to develop both Th1-, Th2- and Th17-associated responses in the respective autoimmune and allergic disease models. These results suggest that WLS is a critical chaperone in maintaining ER homeostasis, glycoprotein quality control and calcium dynamics in DCs.Abbreviations: ATF6: activating transcription factor 6; ATG5: autophagy related 5; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; ATP2A1/SERCA1: ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1; BALF: bronchoalveolar lavage fluid; BFA: brefeldin A; BMDC: bone marrow-derived dendritic cell; CALR: calreticulin; CANX: calnexin; CCL2/MCP-1: C-C motif chemokine ligand 2; CNS: central nervous system; CT: C-terminal domain; DTT: dithiothreitol; DNAJB9/ERDJ4: DnaJ heat shock protein family (Hsp40) member B9; EAE: experimental autoimmune encephalomyelitis; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ERN1/IRE1: endoplasmic reticulum (ER) to nucleus signaling 1; GFP: green fluorescent protein; HSPA5/GRP78/BiP: heat shock protein A5; IFNA: interferon alpha; IFNAR1: interferon alpha and beta receptor subunit 1; IFNB: interferon beta; IFNG/INFγ: interferon gamma; IFNGR2: interferon gamma receptor 2; IL6: interleukin 6; IL10: interleukin 10; IL12A: interleukin 12A; IL23A: interleukin 23 subunit alpha; ITGAX/CD11c: integrin subunit alpha X; ITPR1/InsP3R1: inositol 1,4,5-trisphosphate receptor type 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; OVA: ovalbumin; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PLF: predicted lipocalin fold; PPP1R15A/GADD34: protein phosphatase 1 regulatory subunit 15A; RYR1/RyanR1: ryanodine receptor 1, skeletal muscle; SD: signal domain; TGFB/TGF-ß: transforming growth factor beta family; Th1: T helper cell type 1; Th17: T helper cell type 17; TM: tunicamycin; TNF/TNF-α: tumor necrosis factor; UPR: unfolded protein response; WLS/wntless: WNT ligand secretion mediator.


Assuntos
Autofagia , Via de Sinalização Wnt , Animais , Autofagia/fisiologia , Células Dendríticas , Estresse do Retículo Endoplasmático , Homeostase , Camundongos
15.
Hum Cell ; 34(3): 785-799, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33683656

RESUMO

Club cells are critical in maintaining airway integrity via, in part, secretion of immunomodulatory Club cell 10 kd protein (CC10) and xenobiotic detoxification. Aryl hydrocarbon receptor (AhR) is important in xenobiotic metabolism, but its role in Club cell function is unclear. To this end, an AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ, 10 nM) was found to induce, in a ligand and AhR-dependent manner, endoplasmic reticulum stress, phospholipid remodeling, free fatty acid and triglyceride synthesis, leading to perilipin 2-dependent lipid droplet (LD) biogenesis in a Club cell-like cell line, NL20. The increase in LDs was due, in part, to the blockade of adipose triglyceride lipase to LDs, while perilipin 5 facilitated LDs-mitochondria connection, leading to the breakdown of LDs via mitochondrial ß-oxidation and acetyl-coA generation. In FICZ-treated cells, increased CC10 secretion and its intracellular association with LDs were noted. Administration of low (0.28 ng), medium (1.42 ng), and high (7.10 ng) doses of FICZ in C57BL/6 mice significantly enhanced lipopolysaccharide (LPS, 0.1 µg)-induced airway inflammation, mucin secretion, pro-inflammatory cytokines and CC10 in the bronchoalveolar lavage fluids, as compared to those seen in mice receiving LPS alone, suggesting the importance of AhR signaling in controlling the metabolic homeostasis and functions of Club cells.


Assuntos
Células Epiteliais/metabolismo , Gotículas Lipídicas/metabolismo , Receptores de Hidrocarboneto Arílico/fisiologia , Sistema Respiratório/citologia , Animais , Carbazóis/farmacologia , Linhagem Celular , Humanos , Inativação Metabólica , Ligantes , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Perilipina-1/farmacologia , Transdução de Sinais/fisiologia , Uteroglobina/metabolismo , Xenobióticos/metabolismo
16.
J Med Virol ; 93(5): 3257-3260, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33506974

RESUMO

Previous studies have revealed a diagnostic role of pathogen-specific IgA in respiratory infections. However, co-detection of serum specific IgA for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and common respiratory pathogens remains largely unexplored. This study utilizes a protein microarray technology for simultaneous and quantitative measurements of specific IgAs for eight different respiratory pathogens including adenovirus, respiratory syncytial virus, influenza virus type A, influenza virus type B, parainfluenza virus, mycoplasma pneumoniae, chlamydia pneumoniae, and SARS-CoV-2 in serum sample of patients with coronavirus disease 2019 (COVID-19). A total of 42 patients with COVID-19 were included and categorized into severe cases (20 cases) and nonsevere cases (22 cases). The results showed that co-detection rate of specific-IgA for SARS-CoV-2 with at least one pathogen were significantly higher in severe cases than that of nonsevere cases (72.2% vs. 46.2%, p = .014). Our study indicates that co-detection of IgA antibodies for respiratory pathogens might provide diagnostic value for the clinics and also be informative for risk stratification and disease management in patients with COVID-19.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Imunoglobulina A/sangue , SARS-CoV-2/imunologia , Adulto , Especificidade de Anticorpos , COVID-19/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
EMBO Rep ; 21(2): e48795, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31908141

RESUMO

Epigenetic regulation is important for cancer progression; however, the underlying mechanisms, particularly those involving protein acetylation, remain to be fully understood. Here, we show that p300/CBP-associated factor (PCAF)-dependent acetylation of the transcription factor intestine-specific homeobox (ISX) regulates epithelial-mesenchymal transition (EMT) and promotes cancer metastasis. Mechanistically, PCAF acetylation of ISX at lysine 69 promotes the interaction with acetylated bromodomain-containing protein 4 (BRD4) at lysine 332 in tumor cells, and the translocation of the resulting complex into the nucleus. There, it binds to promoters of EMT genes, where acetylation of histone 3 at lysines 9, 14, and 18 initiates chromatin remodeling and subsequent transcriptional activation. Ectopic ISX expression enhances EMT marker expression, including TWIST1, Snail1, and VEGF, induces cancer metastasis, but suppresses E-cadherin expression. In lung cancer, ectopic expression of PCAF-ISX-BRD4 axis components correlates with clinical metastatic features and poor prognosis. These results suggest that the PCAF-ISX-BRD4 axis mediates EMT signaling and regulates tumor initiation and metastasis.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Fatores de Transcrição , Acetilação , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Genes Homeobox , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
19.
Sci Adv ; 5(12): eaax9230, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31844669

RESUMO

Long noncoding RNAs (lncRNAs) are important regulators of diverse biological processes; however, their function in macrophage activation is undefined. We describe a new regulatory mechanism, where an unreported lncRNA, PTPRE-AS1, targets receptor-type tyrosine protein phosphatase ε (PTPRE) to regulate macrophage activation. PTPRE-AS1 was selectively expressed in IL-4-stimulated macrophages, and its knockdown promoted M2 macrophage activation via MAPK/ERK 1/2 pathway. In vivo, PTPRE-AS1 deficiency enhanced IL-4-mediated M2 macrophage activation and accelerated pulmonary allergic inflammation while reducing chemical-induced colitis. Mechanistically, PTPRE-AS1 bound WDR5 directly, modulating H3K4me3 of the PTPRE promoter to regulate PTPRE-dependent signaling during M2 macrophage activation. Further, the expression of PTPRE-AS1 and PTPRE was significantly lower in peripheral blood mononuclear cells from patients with allergic asthma. These results provide evidence supporting the importance of PTPRE-AS1 in controlling macrophage function and the potential utility of PTPRE-AS1 as a target for controlling inflammatory diseases.


Assuntos
Asma/genética , Inflamação/genética , RNA Longo não Codificante/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Animais , Asma/metabolismo , Asma/patologia , Proliferação de Células/genética , Modelos Animais de Doenças , Epigênese Genética/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-4/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Sistema de Sinalização das MAP Quinases/genética , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos
20.
Allergy ; 74(9): 1675-1690, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30982974

RESUMO

BACKGROUND: Environmental pollutants, which coexist with allergens, have been associated with the exacerbation of asthma. However, the underlying molecular mechanisms remain elusive. We sought to determine whether benzo(a)pyrene (BaP) co-exposure with dermatophagoides group 1 allergen (Der f 1) can potentiate Der f 1-induced asthma and its underlying mechanisms. METHODS: The effect of BaP was investigated in Der f 1-induced mouse model of asthma, including airway hyper-responsiveness, allergic inflammation, and epithelial-derived cytokines. The impact of BaP on Der f 1-induced airway epithelial cell oxidative stress (ROS) and cytokine release was further analyzed. The role of aryl hydrocarbon receptor (AhR) signaling in BaP-promoted Der f 1-induced ROS, cytokine production, and allergic inflammation was also investigated. RESULTS: Compared with Der f 1, BaP co-exposure with Der f 1 led to airway hyper-responsiveness and increased lung inflammation in mouse model of asthma. Increased expression of TSLP, IL-33, and IL-25 was also found in the airways of these mice. Moreover, BaP co-exposure with Der f 1 activated AhR signaling with increased expression of AhR and CYP1A1 and promoted airway epithelial ROS generation and TSLP and IL-33, but not IL-25, expression. Interestingly, AhR antagonist CH223191 or cells with AhR knockdown abrogated the increased expression of ROS, TSLP, and IL-33. Furthermore, ROS inhibitor N-acetyl-L-cysteine (NAC) also suppressed BaP co-exposure-induced expression of epithelial TSLP, IL-33, and IL-25. Finally, AhR antagonist CH223191 and NAC inhibited BaP co-exposure with Der f 1-induced lung inflammation. CONCLUSIONS: Our findings suggest that BaP facilitates Der f 1-induced epithelial cytokine release through the AhR-ROS axis.


Assuntos
Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Asma/etiologia , Asma/metabolismo , Benzo(a)pireno/efeitos adversos , Cisteína Endopeptidases/imunologia , Citocinas/biossíntese , Receptores de Hidrocarboneto Arílico/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Alérgenos/imunologia , Animais , Modelos Animais de Doenças , Poluentes Ambientais/efeitos adversos , Células Epiteliais/metabolismo , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA