Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Integr Plant Biol ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517054

RESUMO

Camptothecin is a complex monoterpenoid indole alkaloid with remarkable antitumor activity. Given that two C-10 modified camptothecin derivatives, topotecan and irinotecan, have been approved as potent anticancer agents, there is a critical need for methods to access other aromatic ring-functionalized congeners (e.g., C-9, C-10, etc.). However, contemporary methods for chemical oxidation are generally harsh and low-yielding when applied to the camptothecin scaffold, thereby limiting the development of modified derivatives. Reported herein, we have identified four tailoring enzymes responsible for C-9 modifications of camptothecin from Nothapodytes tomentosa, via metabolomic and transcriptomic analysis. These consist of a cytochrome P450 (NtCPT9H) which catalyzes the regioselective oxidation of camptothecin to 9-hydroxycamptothecin, as well as two methyltransferases (NtOMT1/2, converting 9-hydroxycamptothecin to 9-methoxycamptothecin), and a uridine diphosphate-glycosyltransferase (NtUGT5, decorating 9-hydroxycamptothecin to 9-ß-D-glucosyloxycamptothecin). Importantly, the critical residues that contribute to the specific catalytic activity of NtCPT9H have been elucidated through molecular docking and mutagenesis experiments. This work provides a genetic basis for producing camptothecin derivatives through metabolic engineering. This will hasten the discovery of novel C-9 modified camptothecin derivatives, with profound implications for pharmaceutical manufacture.

2.
J Plant Physiol ; 285: 153983, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37116390

RESUMO

In view of the nephrotoxicity, hepatotoxicity, and carcinogenicity of aristolochic acids (AAs), the removal of AAs from plants becomes an urgent priority for ensuring the safety of Aristolochia herbal materials. In this study, based on the root-predominant distribution of aristolochic acid I (AAI) in Aristolochia debilis, transcriptome sequencing, in combination with phylogenetic analyses, and gene expression pattern analysis together provided five candidate genes for investigating AAI biosynthesis. Comprehensive in vitro and in vivo enzymatic assays revealed that Ab6OMT1 (6-O-methyltransferase) and AbNMT1 (N-methyltransferase) exhibit promiscuity in substrate recognition, and they could act in a cooperative fashion to achieve conversion of norlaudanosoline, a predicted intermediate in AAI biosynthetic route, into 3'-hydroxy-N-methylcoclaurine through two different methylation reaction sequences. These results shed light on the molecular basis for AAI biosynthesis in Aristolochia herbs. More importantly, Ab6OMT1 and AbNMT1 may be employed as targets for the metabolic engineering of AAI biosynthesis to produce AAs-free Aristolochia herbal materials.


Assuntos
Aristolochia , Aristolochia/genética , Aristolochia/química , Tetra-Hidropapaverolina , Metiltransferases/genética , Filogenia , Plantas
3.
Planta Med ; 89(13): 1250-1258, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37044129

RESUMO

Camptothecin (CPT) and its derivatives have attracted worldwide attention because of their notable anticancer activity. However, the growing demand for CPT in the global pharmaceutical industry has caused a severe shortage of CPT-producing plant resources. In this study, phytochemical analysis of Nothapodytes tomentosa results in the isolation and identification of CPT (13: ) and 16 analogues (1:  - 12, 14:  - 17: ), including a new (1: ) and five known (9, 10, 12, 15: , and 17: ) CPT analogues with an open E-ring. In view of the potential anticancer activity of CPT analogues with an open E-ring, the fragmentation pathways and mass spectra profiles of these six CPT analogues (1, 9, 10, 12, 15: , and 17: ) are investigated, providing a reference for the rapid detection of these compounds in other plants. Furthermore, based on the fragmentation patterns of CPT (13: ) and known analogues (2:  - 8, 11, 14, 16, 18:  - 26: ), the distribution and content of these compounds in different tissues of N. tomentosa, N. nimmoniana, Camptotheca acuminata, and Ophiorrhiza japonica are further studied. Our findings not only provide an alternative plant resource for further expanding the development and utilization of CPT and its analogues, but also lay a foundation for improving the utilization of known CPT-producing plant resources.


Assuntos
Antineoplásicos Fitogênicos , Camptotheca , Magnoliopsida , Camptotecina/química , Camptotecina/metabolismo , Antineoplásicos Fitogênicos/química , Magnoliopsida/química , Camptotheca/química , Camptotheca/metabolismo
4.
ACS Chem Biol ; 18(1): 102-111, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36623177

RESUMO

Guvermectin is a novel plant growth regulator that has been registered as a new agrochemical in China. It is an adenosine analogue with an unusual psicofuranose instead of ribose. Herein, the gene cluster responsible for guvermectin biosynthesis in Streptomyces caniferus NEAU6 is identified using gene interruption and heterologous expression experiments. A key intermediate psicofuranine 6'-phosphate (PMP) is chemically synthesized, and the functions of GvmB, C, D, and E are verified by individual stepwise enzyme reactions in vitro. The results also show that the biosynthesis of guvermectin is coupled with adenosine production by a single cluster. The higher catalytic efficiency of GvmB on PMP than AMP ensures the effective biosynthesis of guvermectin. Moreover, a phosphoribohydrolase GvmA is employed in the pathway that can hydrolyze AMP but not PMP and shows higher catalytic efficiency for the AMP hydrolysis than that of the AMP dephosphorylation by GvmB, leading to shunting of adenosine biosynthesis toward the production of guvermectin. Finally, the crystal structure of GvmE in complex with the product PMP has been solved. Glu160 at the C-terminal is identified as the acid/base for protonation/deprotonation of N7 of the adenine ring, demonstrating that GvmE is a noncanonical adenine phosphoribosyltransferase.


Assuntos
Adenina Fosforribosiltransferase , Ácido Glutâmico , Adenina Fosforribosiltransferase/química , Adenosina , Monofosfato de Adenosina/química , Modelos Moleculares
5.
J Am Chem Soc ; 144(48): 22000-22007, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36376019

RESUMO

Cocaine, the archetypal tropane alkaloid from the plant genus Erythroxylum, has recently been used clinically as a topical anesthesia of the mucous membranes. Despite this, the key biosynthetic step of the requisite tropane skeleton (methylecgonone) from the identified intermediate 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid (MPOA) has remained, until this point, unknown. Herein, we identify two missing enzymes (EnCYP81AN15 and EnMT4) necessary for the biosynthesis of the tropane skeleton in cocaine by transient expression of the candidate genes in Nicotiana benthamiana. Cytochrome P450 EnCYP81AN15 was observed to selectively mediate the oxidative cyclization of S-MPOA to yield the unstable intermediate ecgonone, which was then methylated to form optically active methylecgonone by methyltransferase EnMT4 in Erythroxylum novogranatense. The establishment of this pathway corrects the long-standing (but incorrect) biosynthetic hypothesis of MPOA methylation first and oxidative cyclization second. Notably, the de novo reconstruction of cocaine was realized in N. benthamiana with the two newly identified genes, as well as four already known ones. This study not only reports a near-complete biosynthetic pathway of cocaine and provides new insights into the metabolic networks of tropane alkaloids (cocaine and hyoscyamine) in plants but also enables the heterologous synthesis of tropane alkaloids in other (micro)organisms, entailing significant implications for pharmaceutical production.


Assuntos
Cocaína , Vias Biossintéticas
6.
Beilstein J Org Chem ; 18: 1009-1016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051563

RESUMO

Two novel diarylcyclopentenones daturamycin A and B (1 and 2), and one new p-terphenyl daturamycin C (3), along with three known congeners (4-6), were isolated from a rhizosphere soil-derived Streptomyces sp. KIB-H1544. The structures of new compounds were elucidated via a joint use of spectroscopic analyses and single-crystal X-ray diffractions. Compounds 1 and 2 belong to a rare class of tricyclic 6/5/6 diarylcyclopentenones, and compounds 3-6 possess a C-18 tricyclic aromatic skeleton. The biosynthetic gene cluster of daturamycins was identified through gene knockout and biochemical characterization experiments and the biosynthetic pathway of daturamycins was proposed.

7.
J Org Chem ; 86(16): 11198-11205, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33855851

RESUMO

Two heterocycle-fused cytochalasan homodimers, bisaspochalasins D (1) and E (2), were isolated from an endophytic Aspergillus flavipes. Their chemical structures were elucidated using a combination of HRESIMS, NMR, theoretical calculations, and crystallographic techniques. Bisaspochalasin D (1) is dimerized by the first reported naturally occurring triple heterobridged 3,8-dioxa-6-azabicyclo[3.2.1]octane framework, while bisaspochalasin E (2) employs a pyrrole ring as the linking moiety. Possible dimerization mechanisms of bisaspochalasins D and E were proposed. The bioassay screening revealed that bisaspochalasin D showed cytotoxic activities against five cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW-480) with IC50 values ranging from 4.45 to 22.99 µM. Additionally, bisaspochalasin D exhibited neurotrophic activities in a PC12 cell-based assay. At a concentration of 10 µM, bisaspochalasin D can promote neurite growth by inducing a differentiation rate of 12.52% for PC12 cells.


Assuntos
Aspergillus , Citocalasinas , Citocalasinas/farmacologia , Células HL-60 , Humanos , Estrutura Molecular
8.
Antonie Van Leeuwenhoek ; 114(6): 823-833, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33774760

RESUMO

A novel endophytic actinomycete with antagonistic activity against various phytopathogenic fungi, designated strain p1417T, was isolated from the root of cattail (Typha angustifolia L.) collected from Yunnan Province, Southwest China. A polyphasic taxonomic study was carried out to establish the taxonomic status of this strain. Strain p1417T was found to have morphological and chemotaxonomic characteristics typical of the genus Streptomyces. The diamino acid present in the cell wall was LL-diaminopimelic acid. Xylose and arabinose occurred in whole cell hydrolysates. The menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The polar lipid profile was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were found to be iso-C16:0, anteiso-C15:0, iso-C15:0 and C16:0. The genomic DNA G + C content of strain p1417T based on the genome sequence was 72.0 mol%. Based on 16 S rRNA gene, five housekeeping genes and whole genome sequences analysis, strain p1417T was most closely related to Streptomyces flavofungini JCM 4753T (99.4% 16 S rRNA gene sequence similarity), Streptomyces alboflavus JCM 4615T (98.8%) and Streptomyces aureoverticillatus JCM 4347T (98.2%). However, the average nucleotide identity values, the digital DNA-DNA hybridization values and the multilocus sequence analysis evolutionary distances between this strain and its closely related strains showed that it belonged to one distinct species. In addition, these results were also supported by differences in the phenotypic and chemotaxonomic characteristics between strain p1417T and three closely related type strains. Therefore, it is concluded that strain p1417T represents a novel species of the genus of Streptomyces, for which the name Streptomyces typhae sp. nov. is proposed. The type strain is p1417T (= CCTCC AA 2019091T = DSM 110636T).


Assuntos
Actinobacteria , Streptomyces , Typhaceae , Antifúngicos , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/genética , Vitamina K 2
9.
Angew Chem Int Ed Engl ; 59(41): 18029-18035, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32648341

RESUMO

Lantibiotics are a type of ribosomally synthesized and post-translationally modified peptides (termed lanthipeptides) with often potent antimicrobial activity. Herein, we report the discovery of a new lantibiotic, lexapeptide, using the library expression analysis system (LEXAS) approach. Lexapeptide has rare structural modifications, including N-terminal (N,N)-dimethyl phenylalanine, C-terminal (2-aminovinyl)-3-methyl-cysteine, and d-Ala. The characteristic lanthionine moiety in lexapeptide is formed by three proteins (LxmK, LxmX, and LxmY), which are distinct from enzymes known to be involved in lanthipeptide biosynthesis. Furthermore, a novel F420 H2 -dependent reductase (LxmJ) from the lexapeptide biosynthetic gene cluster (BGC) is identified to catalyze the reduction of dehydroalanine to install d-Ala. Our findings suggest that lexapeptide is the founding member of a new class of lanthipeptides that we designate as class V. We also identified further class V lanthipeptide BGCs in actinomycetes and cyanobacteria genomes, implying that other class V lantibiotics await discovery.


Assuntos
Aminoácidos/química , Bacteriocinas/química , Genoma , Oxirredutases/química , Peptídeos/química
10.
Front Chem ; 8: 95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133345

RESUMO

Six new pimprinine alkaloids (1-6), including four dimers, dipimprinines A-D (1-4), and two monomers, (±)-Pimprinol D (5), and pimprinone A (6), along with six known congeners (7-12), were isolated from a soil-derived actinomycete Streptomyces sp. NEAU-C99. Structures of the new compounds were elucidated by extensive spectroscopic analyses, single-crystal X-ray diffractions, and ECD calculations. Dipimprinines A-D (1-4) showed weak cytotoxic activities against five tumor cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW-480, with IC50 values ranging from 12.7 to 30.7 µM.

11.
J Nat Prod ; 83(1): 111-117, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31904958

RESUMO

Seven new trialkyl-substituted benzene derivatives named benwamycins A-G (1-7), together with three known congeners, 8-10, were isolated from culture broth of the soil-derived Streptomyces sp. KIB-H1471. Their structures were elucidated by using 1D and 2D NMR analyses in combination with HRESIMS data. The absolute configurations of 1-9 were determined by chemical conversion and comparison of circular dichroism spectra and confirmed for 1 by single-crystal X-ray crystallography. Compounds 6 and 7 have a unique γ-pyrone-like ring on one side chain. Compounds 2 and 6 inhibited human T cell proliferation with IC50 values of 14.3 and 12.5 µM, respectively, without obvious cytotoxicity for naïve human T cells. Compounds 3 and 6 could weakly enhance insulin-stimulated glucose uptake.


Assuntos
Derivados de Benzeno/química , Streptomyces/química , Derivados de Benzeno/isolamento & purificação , Proliferação de Células , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Solo
12.
New Phytol ; 225(5): 1906-1914, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31705812

RESUMO

Some medicinal plants of the Solanaceae produce pharmaceutical tropane alkaloids (TAs), such as hyoscyamine and scopolamine. Littorine is a key biosynthetic intermediate in the hyoscyamine and scopolamine biosynthetic pathways. However, the mechanism underlying littorine formation from the precursors phenyllactate and tropine is not completely understood. Here, we report the elucidation of littorine biosynthesis through a functional genomics approach and functional identification of two novel biosynthesis genes that encode phenyllactate UDP-glycosyltransferase (UGT1) and littorine synthase (LS). UGT1 and LS are highly and specifically expressed in Atropa belladonna secondary roots. Suppression of either UGT1 or LS disrupted the biosynthesis of littorine and its TA derivatives (hyoscyamine and scopolamine). Purified His-tagged UGT1 catalysed phenyllactate glycosylation to form phenyllactylglucose. UGT1 and LS co-expression in tobacco leaves led to littorine synthesis if tropine and phenyllactate were added. This identification of UGT1 and LS provides the missing link in littorine biosynthesis. The results pave the way for producing hyoscyamine and scopolamine for medical use by metabolic engineering or synthetic biology.


Assuntos
Derivados da Atropina , Solanaceae , Genômica , Escopolamina , Tropanos
13.
J Nat Prod ; 82(7): 1813-1819, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31310115

RESUMO

Eight new sulfur-bridged pyranonaphthoquinone (PNQ) dimers, naquihexcins C-J (1-8), a new PNQ monomer, naquihexcin K (10), and three known analogues (9, 11, and 12) were isolated from Streptomyces sp. KIB3133. The new structures were elucidated by interpretation of spectroscopic data. Dimer 4 was synthesized via a cascade SN2 reactions between two monomers and sodium sulfide, an approach motivated by the proposed biosynthetic pathway of dimeric pyranonaphthoquinones. Naquihexcin E (3) exhibited moderate HIV-1 inhibitory activity. Naquihexcins C (1), E (3), and I (7) showed inhibitory effects against two tumor cell lines (HL-60 and MCF-7) with IC50 values ranging from 1.4 to 16.1 µM.


Assuntos
Fármacos Anti-HIV/farmacologia , Antineoplásicos/farmacologia , Naftoquinonas/química , Piranos/química , Microbiologia do Solo , Streptomyces/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , HIV-1/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Naftoquinonas/farmacologia
14.
Nat Prod Res ; 33(2): 219-225, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29495881

RESUMO

Actinomycin Z6 (1), a new member of the actinomycin family, along with three congeners of the Z-type (Z1, Z3, Z5) actinomycins, are produced from Streptomyces sp. KIB-H714. Their structures were authenticated by comprehensive spectroscopic data interpretation. Different from all the reported Z-type actinomycins, the ß-ring of the new compound actinomycin Z6 includes an additional ring linked between the actinoyl chromophore and ß-peptidolactone. In Z3 and Z5, the L-threonine in ß-depsipeptide is replaced by the unusual 4-chlorothreonine, an amino acid rarely found in actinomycin family. All isolates were evaluated for cytotoxicity against five human tumor cell lines and for inhibitory activity against Candida albicans and Staphylococcus aureus.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Dactinomicina/análogos & derivados , Dactinomicina/farmacologia , Streptomyces/química , Anti-Infecciosos/química , Antineoplásicos/química , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Dactinomicina/química , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxigênio/química , Espectrometria de Massas por Ionização por Electrospray , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Treonina/análogos & derivados , Treonina/química
15.
J Antibiot (Tokyo) ; 71(12): 1040-1043, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30218038

RESUMO

Chemical investigation of a strain Streptomyces sp. KIB-H1318 isolated from soil sample led to the discovery of three new phenoxazinone-related alkaloids 1-3, as well as two known analogs exfoliazone (4) and viridobrunnine A (5). Their structures were determined on the basis of extensive spectroscopic analysis. The antimicrobial activity and cytotoxicity of the isolates were assayed. Exfoliazone and viridobrunnine A exhibited minor antibacterial activity against Escherichia coli ATCC 8099, Bacillus subtilis ATCC 6633, and Staphylococcus aureus ATCC 6538. Compound 2 exhibited low cytotoxicity against two human cancer cell lines HeLa and SW480 with the IC50 values of 36.8 and 37.8 µM, respectively.


Assuntos
Alcaloides/química , Oxazinas/química , Streptomyces/química , Alcaloides/isolamento & purificação , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Oxazinas/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos
16.
Molecules ; 23(7)2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986397

RESUMO

Dryopteris fragrans is a valuable medicinal plant resource with extensive biological activities including anti-cancer, anti-oxidation, and anti-inflammation activities. This work aims to study further the cytotoxic constituents from Dryopteris fragrans. In this work, two new phenolic derivatives known as dryofragone (1) and dryofracoumarin B (2) with six known compounds (3⁻8) were isolated from the petroleum ether fraction of the methanol extract of the aerial parts of Dryopteris fragrans (L.) Schott by two round cytotoxicity-guided tracking with the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and cell counting kit-8 (CCK-8) assay. Their structures were elucidated by the extensive spectroscopic analysis (¹H-NMR, 13C-NMR, and two dimensions NMR), chemical derivatization, and comparison with data reported in the literature. All the isolates were evaluated for their cytotoxicity against nine cancer cell lines as well as their in vitro immunomodulatory activity. The results showed that compounds have a modest cytotoxicity toward human HeLa cell line with IC50 value below 30 µM and compounds 4 and 5 may modulate immunity to affect the growth of tumor cells.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Dryopteris/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais
17.
J Antibiot (Tokyo) ; 71(7): 672-676, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29651143

RESUMO

Two new glycosylated piericidins, glucopiericidinol A3 (1) and 7-demethyl-glucopiericidin A (2), along with four known analogs were isolated from the culture broth of Streptomyces sp. KIB-H1083. The chemical structures of new compounds were elucidated by spectroscopic analyses. Their cytotoxicity on HL-60, SMMC-772, A-549, MCF-7, and SW480 cell lines, as well as antimicrobial activities was evaluated. The results showed that glucopiericidin A (4) has potent cytotoxicity against HL-60, SMMC-772, A-549, and MCF-7 cell lines with IC50 values of 0.34, 0.65, 0.60, and 0.50 µM, respectively. For the antimicrobial activity, piericidin A (6) showed most powerful inhibitory activities against Xanthomonas oryzae pv. oryzicola, and Penicillium decumbens.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Streptomyces/química , Antibióticos Antineoplásicos/isolamento & purificação , Antibióticos Antineoplásicos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Linhagem Celular Tumoral , Endófitos/química , Fermentação , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Penicillium/efeitos dos fármacos , Xanthomonas/efeitos dos fármacos
18.
J Nat Prod ; 80(10): 2615-2619, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28990780

RESUMO

Our natural products discovery program utilizes endophytic actinomycetes associated with plants and employs biological assays and HPLC-based metabolite profiles as the preliminary screen to identify strains of interest, followed by large-scale fermentation and isolation, leading to new and/or bioactive natural products. Six new trialkyl-substituted aromatic acids, namely, lorneic acids E-J (1-6), together with two known analogues (7 and 8), were isolated and identified from the culture extract of Streptomyces sp. KIB-H1289, an endophytic actinomycete obtained from the inner tissue of the bark of Betula mandshurica Nakai. The structures were characterized by interpretation of their spectroscopic data, mainly 1D and 2D NMR. Among them, compound 5 contains a unique disulfide bond that is presumably derived from N-acetylcysteine. All isolated metabolites were evaluated for their inhibitory activity on tyrosinase.


Assuntos
Actinobacteria/química , Derivados de Benzeno/isolamento & purificação , Acetilcisteína/metabolismo , Derivados de Benzeno/química , Betula/microbiologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Endófitos/química , Estrutura Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Ressonância Magnética Nuclear Biomolecular , Casca de Planta/química , Streptomyces/química
19.
Nat Prod Bioprospect ; 7(4): 329-334, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28634711

RESUMO

Tamoxifen resistance (TamR) is the underlying cause of treatment failure in many breast cancer patients receiving tamoxifen. In order to look for noncytotoxic natural products with the ability to reverse TamR, an extract from strain Streptomyces sp. KIB-H0495 was detected to be active. Subsequent large scale fermentation and isolation led to the isolation of four α-pyrone derivatives including two new compounds, violapyrones J (2) and K (3), and two known analogues, violapyrones B (1) and I (4). Further bioactivity assays indicated that only 1 and 3 exerted potent resensitization effects on MCF-7/TamR cells at a concentration of 1 µM. Owing to the simple structures of 1 and 3, these two compounds might have potential for further investigation as novel tamoxifen resensitization agent in breast cancer chemotherapy.

20.
Proc Natl Acad Sci U S A ; 112(27): 8278-83, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26056295

RESUMO

Leinamycin (LNM) is a potent antitumor antibiotic produced by Streptomyces atroolivaceus S-140, featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. Upon reductive activation in the presence of cellular thiols, LNM exerts its antitumor activity by an episulfonium ion-mediated DNA alkylation. Previously, we have cloned the lnm gene cluster from S. atroolivaceus S-140 and characterized the biosynthetic machinery responsible for the 18-membered lactam backbone and the alkyl branch at C3 of LNM. We now report the isolation and characterization of leinamycin E1 (LNM E1) from S. atroolivacues SB3033, a ΔlnmE mutant strain of S. atroolivaceus S-140. Complementary to the reductive activation of LNM by cellular thiols, LNM E1 can be oxidatively activated by cellular reactive oxygen species (ROS) to generate a similar episulfonium ion intermediate, thereby alkylating DNA and leading to eventual cell death. The feasibility of exploiting LNM E1 as an anticancer prodrug activated by ROS was demonstrated in two prostate cancer cell lines, LNCaP and DU-145. Because many cancer cells are under higher cellular oxidative stress with increased levels of ROS than normal cells, these findings support the idea of exploiting ROS as a means to target cancer cells and highlight LNM E1 as a novel lead for the development of anticancer prodrugs activated by ROS. The structure of LNM E1 also reveals critical new insights into LNM biosynthesis, setting the stage to investigate sulfur incorporation, as well as the tailoring steps that convert the nascent hybrid peptide-polyketide biosynthetic intermediate into LNM.


Assuntos
Antineoplásicos/metabolismo , Lactamas/metabolismo , Macrolídeos/metabolismo , Pró-Fármacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/metabolismo , Tionas/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Lactamas/química , Macrolídeos/química , Espectroscopia de Ressonância Magnética , Masculino , Estrutura Molecular , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Streptomyces/genética , Streptomyces/metabolismo , Tiazóis/química , Tionas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA