Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(1): 71-83, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38112105

RESUMO

Tyrosine sulfation in the Golgi of secreted and membrane proteins is an important post-translational modification (PTM). However, its labile nature has limited analysis by mass spectrometry (MS), a major reason why no sulfoproteome studies have been previously reported. Here, we show that a phosphoproteomics experimental workflow, which includes serial enrichment followed by high resolution, high mass accuracy MS, and tandem MS (MS/MS) analysis, enables sulfopeptide coenrichment and identification via accurate precursor ion mass shift open MSFragger database search. This approach, supported by manual validation, allows the confident identification of sulfotyrosine-containing peptides in the presence of high levels of phosphorylated peptides, thus enabling these two sterically and ionically similar isobaric PTMs to be distinguished and annotated in a single proteomic analysis. We applied this approach to isolated interphase and mitotic rat liver Golgi membranes and identified 67 tyrosine sulfopeptides, corresponding to 26 different proteins. This work discovered 23 new sulfoproteins with functions related to, for example, Ca2+-binding, glycan biosynthesis, and exocytosis. In addition, we report the first preliminary evidence for crosstalk between sulfation and phosphorylation in the Golgi, with implications for functional control.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho , Peptídeos/química , Tirosina/metabolismo , Processamento de Proteína Pós-Traducional
2.
Geroscience ; 42(6): 1621-1633, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32399915

RESUMO

HIF-1-mediated adaptation to changes in oxygen availability is a critical aspect of healthy physiology. HIF is regulated by a conserved mechanism whereby EGLN/PHD family members hydroxylate HIF in an oxygen-dependent manner, targeting it for ubiquitination by Von-Hippel-Lindau (VHL) family members, leading to its proteasomal degradation. The activity of the only C. elegans PHD family member, EGL-9, is also regulated by a hydrogen sulfide sensing cysteine-synthetase-like protein, CYSL-1, which is, in turn, regulated by RHY-1/acyltransferase. Over the last decade, multiple seminal studies have established a role for the hypoxic response in regulating longevity, with mutations in vhl-1 substantially extending C. elegans lifespan through a HIF-1-dependent mechanism. However, studies on other components of the hypoxic signaling pathway that similarly stabilize HIF-1 have shown more mixed results, suggesting that mutations in egl-9 and rhy-1 frequently fail to extend lifespan. Here, we show that egl-9 and rhy-1 mutants suppress the long-lived phenotype of vhl-1 mutants. We also show that RNAi of rhy-1 extends lifespan of wild-type worms while decreasing lifespan of vhl-1 mutant worms. We further identify VHL-1-independent gene expression changes mediated by EGL-9 and RHY-1 and find that a subset of these genes contributes to longevity regulation. The resulting data suggest that changes in HIF-1 activity derived by interactions with EGL-9 likely contribute greatly to its role in regulation of longevity.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Aciltransferases , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Culina , Regulação da Expressão Gênica , Longevidade/genética , Oxigênio/metabolismo
3.
Nat Commun ; 8: 15164, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28447620

RESUMO

Centrosome number is tightly controlled during the cell cycle to ensure proper spindle assembly and cell division. However, the underlying mechanism that controls centrosome number remains largely unclear. We show herein that the DNA replication licensing factor Cdc6 is recruited to the proximal side of the centrioles via cyclin A to negatively regulate centrosome duplication by binding and inhibiting the cartwheel protein Sas-6 from forming a stable complex with another centriole duplication core protein, STIL. We further demonstrate that Cdc6 colocalizes with Plk4 at the centrosome, and interacts with Plk4 during S phase. Plk4 disrupts the interaction between Sas-6 and Cdc6, and suppresses the inhibitory role of Cdc6 on Sas-6 by phosphorylating Cdc6. Overexpressing wild-type Cdc6 or Plk4-unphosphorylatable Cdc6 mutant 2A reduces centrosome over-duplication caused by Plk4 overexpression or hydroxyurea treatment. Taken together, our data demonstrate that Cdc6 and Plk4 antagonistically control proper centrosome duplication during the cell cycle.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Centrossomo/fisiologia , Replicação do DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Ciclina A1/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , Fuso Acromático/metabolismo
4.
J Cell Sci ; 129(7): 1429-40, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26872786

RESUMO

RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , DNA Ribossômico/genética , Proteínas Nucleares/metabolismo , RNA Polimerase I/metabolismo , Iniciação da Transcrição Genética/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fase G1/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Região Organizadora do Nucléolo/genética , Nucleofosmina , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína
5.
J Mater Chem B ; 1(25): 3136-3143, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32260913

RESUMO

Chemotherapy has been widely used in clinical practice for cancer treatment. A major challenge for a successful chemotherapy is to potentiate the anticancer activity, whilst reducing the severe side effects. In this context, we design a bio-inspired protein-gold nanoconstruct (denoted as AFt-Au hereafter) with a core-void-shell structure which exhibits a high selectivity towards carcinoma cells. Anticancer drug 5-fluorouracil (5-FU) can be sequestered into the void space of the construct to produce an integrated nanoscale hybrid AFt-AuFU that exhibits an increased cellular uptake of 5-FU. More importantly, AFt-Au, serving as a bio-nano-chemosensitizer, renders carcinoma cells more susceptible to 5-FU by cell-cycle regulation, and thus, leads to a dramatic decrease of the IC50 value (i.e. the drug concentration required to kill 50% of the cell population) of 5-FU in HepG2 cells from 138.3 µM to 9.2 µM. Besides HepG2 cells, a remarkably enhanced anticancer efficacy and potentially reduced side effects are also achieved in other cell lines. Our further work reveals that the drug 5-FU is internalized into cells with AFt-Au primarily via receptor-mediated endocytosis (RME). After internalization, AFt-AuFU colocalizes with lysosomes which trigger the release of 5-FU under acidic conditions. Overall, our approach provides a novel procedure in nanoscience that promises an optimal chemotherapeutic outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA