Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Mar Drugs ; 22(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786610

RESUMO

Octocoral of the genus Clavularia is a kind of marine invertebrate possessing abundant cytotoxic secondary metabolites, such as prostanoids and dolabellanes. In our continuous natural product study of C. spp., two previously undescribed prostanoids [clavulone I-15-one (1) and 12-O-deacetylclavulone I (2)] and eleven known analogs (3-13) were identified. The structures of these new compounds were elucidated based on analysis of their 1D and 2D NMR, HRESIMS, and IR data. Additionally, all tested prostanoids (1 and 3-13) showed potent cytotoxic activities against the human oral cancer cell line (Ca9-22). The major compound 3 showed cytotoxic activity against the Ca9-22 cells with the IC50 value of 2.11 ± 0.03 µg/mL, which echoes the cytotoxic effect of the coral extract. In addition, in silico tools were used to predict the possible effects of isolated compounds on human tumor cell lines and nitric oxide production, as well as the pharmacological potentials.


Assuntos
Antozoários , Antineoplásicos , Prostaglandinas , Humanos , Antozoários/química , Animais , Linhagem Celular Tumoral , Prostaglandinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Óxido Nítrico/metabolismo , Concentração Inibidora 50 , Organismos Aquáticos , Estrutura Molecular
2.
Neuroscience ; 547: 98-107, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657727

RESUMO

OBJECTIVE: Postoperative pain remains one of the most common complaints after surgery, and appropriate treatments are limited. METHODS: We therefore investigated the effect of the anti-nociceptive properties of magnesium sulfate (MgSO4), an N-methyl-D-aspartate (NMDA) receptor antagonist, on incision-induced postoperative pain and peripheral and central nervous system inflammation. RESULTS: We found that local MgSO4 administration dose-dependently increases paw withdrawal latency, indicating reduced peripheral postoperative pain. Furthermore, MgSO4 inhibited the expression of interleukin-1ß (IL-1ß) and inducible nitric oxide synthase (iNOS) and phosphorylation of the NMDA receptor NR1 subunit in injured paw tissue and significantly attenuated microglial and astrocytic activation in the ipsilateral lumbar spinal cord dorsal horn. CONCLUSION: Locally administered MgSO4 has potential for development as an adjunctive therapy for preventing central nociceptive sensitization.


Assuntos
Inflamação , Sulfato de Magnésio , Nociceptividade , Dor Pós-Operatória , Ratos Sprague-Dawley , Animais , Sulfato de Magnésio/farmacologia , Sulfato de Magnésio/administração & dosagem , Masculino , Nociceptividade/efeitos dos fármacos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ratos , Modelos Animais de Doenças , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Sensibilização do Sistema Nervoso Central/fisiologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Analgésicos/farmacologia , Analgésicos/administração & dosagem , Interleucina-1beta/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
3.
J Food Sci ; 89(4): 2465-2481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380680

RESUMO

Camellia seed oil (CO) has high nutritional value and multiple bioactivities. However, the specific anti-fatigue characteristics and the implied mechanism of CO have not yet been fully elucidated. Throughout this investigation, male C57BL/6J mice, aged 8 weeks, underwent exhaustive exercise with or without CO pretreatment (2, 4, and 6 mL/kg BW) for 28 days. CO could extend the rota-rod and running time, reduce blood urea nitrogen levels and serum lactic acid, and increase muscle and hepatic glycogen, adenosine triphosphate, and anti-oxidative indicators. Additionally, CO could upregulate the mRNA and Nrf2 protein expression levels, as well as enhance the levels of its downstream antioxidant enzymes and induce the myofiber-type transformation from fast to slow and attenuate the gut mechanical barrier. Moreover, CO could ameliorate gut dysbiosis by reducing Firmicutes to Bacteroidetes ratio at the phylum level, increasing the percentage of Alistipes, Alloprevotella, Lactobacillus, and Muribaculaceae, and decreasing the proportion of Dubosiella at the genus level. In addition, specific bacterial taxa, which were altered by CO, showed a significant correlation with partial fatigue-related parameters. These findings suggest that CO may alleviate fatigue by regulating antioxidant capacity, muscle fiber transformation, gut mechanical barrier, and gut microbial composition in mice. PRACTICAL APPLICATION: Our study revealed that camellia seed oil (CO) could ameliorate exercise-induced fatigue in mice by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. Our results promote the application of CO as an anti-fatigue functional food that targets oxidative stress, myofiber-type transformation, and microbial community.


Assuntos
Camellia , Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Óleos de Plantas/farmacologia , Bacteroidetes , Firmicutes , Fibras Musculares Esqueléticas
4.
J Nat Med ; 78(2): 342-354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324123

RESUMO

Evodiamine, a novel alkaloid, was isolated from the fruit of tetradium. It exerts a diversity of pharmacological effects and has been used to treat gastropathy, hypertension, and eczema. Several studies reported that evodiamine has various biological effects, including anti-nociceptive, anti-bacterial, anti-obesity, and anti-cancer activities. However, there is no research regarding its effects on drug-resistant cancer. This study aimed to investigate the effect of evodiamine on human vemurafenib-resistant melanoma cells (A375/R cells) proliferation ability and its mechanism. Cell activity was assessed using the cell counting kit-8 (CCK-8) method. Flow cytometry assay was used to assess cell apoptosis and cell cycle. A xenograft model was used to analyze the inhibitory effects of evodiamine on tumor growth. Bioinformatics analyses, network pharmacology, and molecular docking were used to explore the potential mechanism of evodiamine in vemurafenib-resistant melanoma. RT-qPCR and Western blotting were performed to reveal the molecular mechanism. The alkaloid extract of the fruit of tetradium, evodiamine showed the strongest tumor inhibitory effect on vemurafenib-resistant melanoma cells compared to treatment with vemurafenib alone. Evodiamine inhibited vemurafenib-resistant melanoma cell growth, proliferation, and induced apoptosis, conforming to a dose-effect relationship and time-effect relationship. Results from network pharmacology and molecular docking suggested that evodiamine might interact with IRS4 to suppress growth of human vemurafenib-resistant melanoma cells. Interestingly, evodiamine suppressed IRS4 expression and then inhibited PI3K/AKT signaling pathway, and thus had the therapeutic action on vemurafenib-resistant melanoma.


Assuntos
Alcaloides , Antineoplásicos , Melanoma , Quinazolinas , Humanos , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Alcaloides/farmacologia , Linhagem Celular Tumoral , Proteínas Substratos do Receptor de Insulina/metabolismo
5.
Anticancer Drugs ; 35(3): 251-262, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38164802

RESUMO

The potential treatment option of targeting DNA methyltransferase 1 (DNMT1) has been explored, but further investigation is required to assess the efficacy of combination therapy in acute myeloid leukemia (AML). In this study, bioinformatics and online databases were utilized to select the combined therapeutic targets. The potential kinases associated with DNMT1-related genes in AML were analyzed using the Cancer Genome Atlas (TCGA) database and X2K Appyter (Expression2Kinases) database. In-vitro evaluations were conducted to assess the synergistic effects between DNMT1 and ATR/ATM in five AML cell lines (MOLM-16, NB-4, HEL 92.1.7, HEL, EOL-1). In our study, ATR and ATM are primarily the kinases associated with DNMT1-related genes in AML. We observed a significant upregulation of DNMT1, ATR, and ATM expression in AML tissues and cell lines. The five AML cell lines demonstrated sensitivity to monotherapy with GSK-368, AZD-1390, or AZD-6738 (EC50 value ranges from 5.461 to 7.349 nM, 5.821 to 10.120 nM, and 7.618 to 10.100 nM, respectively). A considerable synergistic effect was observed in AML cell lines when combining GSK-368 and AZD-1390, GSK-368 and AZD-6738, or AZD-1390 and AZD-6738, resulting in induced cell apoptosis and inhibited cell growth. DNMT1, ATM, and ATR possess potential as therapeutic targets for AML. Both individual targeting and combination targeting of these molecules have been confirmed as promising therapeutic approaches for AML.


Assuntos
Indóis , Leucemia Mieloide Aguda , Pirimidinas , Sulfonamidas , Humanos , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Morfolinas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
6.
Int Immunopharmacol ; 128: 111529, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244516

RESUMO

BACKGROUND: Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) plays a crucial role in DNA base excision repair, cell apoptosis, cell signaling, and the regulation of transcription factors through redox modulation and the control of reactive oxygen species (ROS). However, the connection between APE1 and acute liver injury (ALI) remains enigmatic. This study aims to unravel the molecular mechanisms underlying ALI and shed light on the role of APE1 in this context. METHOD: We induced acute liver injury (ALI) in mice by lipopolysaccharide/D-galactosamine (LPS/GalN) and intervened with the APE1 inhibitor E3330. We examined the expression of APE1 in ALI mice and ALI patient tissues after E3330 intervention, Additionally, we measured hepatic oxidative stress, ferroptosis, and autophagy marker proteins and genes. In establishing an AML-12 liver cell injury model, we utilized the Nrf2 activator tert-butylhydroquinone (TBHQ) as an intervention and examined APE1, Nrf2, ferroptosis-related proteins, and autophagy marker proteins and mRNA. RESULTS: Both ALI patients and ALI mice exhibited reduced APE1 expression levels. After E3330 intervention, there was a significant exacerbation of liver injury, oxidative stress, and a reduction in the expression of proteins, including GPX4, X-CT, ATG3, ATG5, and LC3 (LC3I/II). Consistent results were also observed in AML-12 cells. With TBHQ intervention, Nrf2 expression increased, along with the expression of proteins associated with iron death and autophagy. Mechanistically, APE1 activation regulates Nrf2 to inhibit ferroptosis and promote autophagy in hepatocytes. CONCLUSION: The data suggest that APE1 is a pivotal player in ALI, closely linked to its regulation of Nrf2. Strategies involving APE1 activation to modulate Nrf2, thereby inhibiting hepatocyte ferroptosis and promoting autophagy, may represent innovative therapeutic approaches for ALI. Additionally, tert-butylhydroquinone (TBHQ) holds significant promise in the treatment of acute liver injury.


Assuntos
Benzoquinonas , Ferroptose , Hidroquinonas , Leucemia Mieloide Aguda , Propionatos , Animais , Humanos , Camundongos , Autofagia/genética , Hepatócitos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
7.
J Ultrasound ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38219240

RESUMO

OBJECTIVE: To investigate the value of painless transvaginal four-dimensional hysterosalpingo contrast sonography (TV 4-D HyCoSy) in reducing venous intravasation and its influencing factors through a retrospective comparative study on conventional TV 4-D HyCoSy. MATERIALS AND METHODS: A total of 451 patients were enrolled in this study from Jan. 2019 to Oct. 2021. There were 249 patients in the painless TV 4-D HyCoSy group and 202 patients in the conventional TV 4-D HyCoSy group. The incidence of venous intravasation and its related influencing factors were analyzed and compared between these two groups. The difficulty of image evaluation for the diagnosis was also compared. RESULTS: There was no significant difference in the baseline characteristics between the painless group and the conventional group (p > 0.05). Compared with the conventional group, the painless group had a lower incidence of venous intravasation (16.9 vs. 24.8%; p = 0.039). Painless TV 4-D HyCoSy was more effective in reducing venous intravasation in patients with primary infertility (p = 0.032) without a history of pelvic surgery (p = 0.008) or ectopic pregnancy (p = 0.018). Logistic regression analysis demonstrated that painless TV 4-D HyCoSy and endometrial thickness > 5 mm were protective factors for venous intravasation. Moreover, the diagnostic procedure was easier in the painless group than in the conventional group (p = 0.002). CONCLUSIONS: Painless TV 4D-HyCoSy may be an effective mode in reducing the incidence of venous intravasation and improving the diagnosis of patency of fallopian tubes.

8.
Int Immunopharmacol ; 126: 111279, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056197

RESUMO

The osteoimmune response plays a crucial regulatory role in the osseointegration of dental implants. Previous studies found the antimicrobial peptide coating (GL13K) could activate the immunomodulatory potential of macrophages (Raw 264.7) and promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). To further investigate the mechanism of interaction between immunomodulation and differentiation, a co-culture model of the representative cells (Raw 264.7 and BMSCs) was constructed to mimic the immune microenvironment. In this system, GL13K coating of titanium implant effectively inhibited the polarization of the inflammatory M1 type and promoted the polarization of the anti-inflammatory M2 type. Furthermore, the inhibited NF-κB signaling pathway and Mip-2 gene expression were found and validated by bioinformatics analysis and virus-induced gene silencing, which significantly affected the tissue repair process. It can be concluded that the GL13K coating had the potential to establish a localized immune microenvironment conducive to osteogenic differentiation through cellular interactions. Subsequent investigations would be dedicated to a thorough examination of the osseointegration effects of GL13K coating.


Assuntos
NF-kappa B , Osteogênese , NF-kappa B/metabolismo , Titânio/farmacologia , Macrófagos , Diferenciação Celular
9.
Int Immunopharmacol ; 125(Pt A): 111170, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944218

RESUMO

BACKGROUND AND OBJECTIVE: Neuropathic pain (NeP) induced dysbiosis of intestinal microbiota in chronic constriction injury (CCI) rats. Emodin has analgesic effect but the detailed mechanism is not clear at the present time. This study aims to explore the underling mechanism of action of emodin against NeP with in CCI model. METHODS: Male SD rats (180-220 g) were randomly divided into three groups: sham group, CCI group, and emodin group. Behavioral tests were performed to evaluate the therapeutic effects of emodin on CCI model. Feces and spinal cords of all rats were collected 15 days after surgery. 16S rDNA sequencing, untargeted metabolomics, qPCR and ELISA were performed. RESULTS: Mechanical withdrawal thresholds (MWT), thermal withdrawal latency (TWL) and Sciatic functional index (SFI) in emodin group were significantly higher than CCI group (P < 0.05). Emodin not only inhibited the expression of pro-inflammatory cytokines in the spinal cords and colonic tissue, but also increased the expression of tight junction protein in colonic tissue. 16S rDNA sequencing showed that emodin treatment changed the community structure of intestinal microbiota in CCI rats. Untargeted metabolomics analysis showed that 33 differential metabolites were screened out between CCI group and emodin group. After verification, we found that emodin increased the level of S-adenosylmethionine (SAM) and Histamine in the spinal cord of CCI rats. CONCLUSION: Emodin was effective in relieving neuropathic pain, which is linked to inhibition inflammatory response, increasing the proportion of beneficial bacteria and beneficial metabolites.


Assuntos
Emodina , Microbiota , Neuralgia , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Emodina/farmacologia , Emodina/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Medula Espinal , Neuralgia/metabolismo , DNA Ribossômico/metabolismo
10.
Arch Oral Biol ; 152: 105735, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37244089

RESUMO

OBJECTIVE: To build a prognostic model for oral squamous cell carcinoma patients with type 2 diabetes mellitus. DESIGN: Oral squamous cell carcinoma patients with type 2 diabetes mellitus in Xiangya Hospital were studied. Patients during January 2011 to January 2015 were included in training set (n = 146), and those during January 2017 to December 2020 were included in test set (n = 81). Univariate and multivariate Cox regressions were used to screen independent prognostic variables. Nomogram was used to show the model. C-index, internal bootstrap resampling and external validation were used to evaluate the model. RESULTS: Six independent prognostic factors (T stage, N stage, pathological grade, metformin use, sulfonylureas use, and fasting blood glucose) were screened from training set. Based on the six variables, nomogram was constructed to predict the prognosis of oral squamous cell carcinoma patients with type 2 diabetes mellitus. C-index value was 0.728, and result of internal bootstrap resampling showed better prediction efficiency for one-year survival. All patients were divided into two groups according to total points calculated based on the model. Group with low total points experienced better survival than that with high total points both in training set and test set. CONCLUSIONS: The model provides a relatively accurate method to predict the prognosis of oral squamous cell carcinoma patients with type 2 diabetes mellitus.


Assuntos
Carcinoma de Células Escamosas , Diabetes Mellitus Tipo 2 , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Prognóstico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Diabetes Mellitus Tipo 2/complicações
11.
J Ethnopharmacol ; 312: 116526, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37088234

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jian-Pi-Yi-Shen (JPYS) is a herbal decoction being used to relieve the symptoms of chronic kidney disease (CKD) and its complications, including anemia, for over twenty years. Nonetheless, it is unclear how JPYS influences renal anemia and iron metabolism. AIM OF THE STUDY: An analysis of network pharmacology, chemical profiling, and in vivo experiments was conducted to identify the impact of JPYS on JAK2-STAT3 pathway and iron utilization in renal anemia and CKD. MATERIALS AND METHODS: The chemical properties of JPYS and its exposed ingredients were detected in vivo. And based on the aforesaid chemical compounds, the potential targets and signaling pathways of JPYS for renal anemia treatment were predicted by network pharmacology. Afterward, an adenine-feeding animal model of CKD-related anemia was developed to verify the mechanism by which JPYS modulates iron recycling to treat renal anemia. Renal injury was estimated by serum creatinine (Scr), blood urea nitrogen (BUN), histopathological examinations and fibrosis degree. Western blot, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry approaches were utilized to assess the levels of JAK2, STAT3 and iron metabolism-related factors. RESULTS: There were 164 active ingredients identified in JPYS, including prototypes and metabolites in vivo were identified in JPYS, and 21 core targets were found through network pharmacology based on topological characteristics. Combined with the core targets and pathway enrichment analysis, the majority of the candidate targets were associated with the JAK2-STAT3 signaling pathways. Experimental results indicated that JPYS treatment significantly decreased the expression of BUN and Scr, restored renal pathological damage, down-regulated fibrosis degree, and improved hematological parameters such as red blood cell, hemoglobin and hematocrit in CKD rats. Furthermore, JPYS significantly restored iron metabolism from dysregulation by increasing the levels of iron and ferritin in the serum, inhibiting the production of hepcidin in liver and serum, and regulating transferrin receptor 1 in bone marrow. Meanwhile, the expression of JAK2 and STAT3 was suppressed by JPYS treatment. CONCLUSIONS: Based on these results, JPYS reduces hepcidin levels by inhibiting the activation of JAK2-STAT3 signaling, thereby protecting against iron deficiency anemia.


Assuntos
Anemia , Insuficiência Renal Crônica , Ratos , Animais , Hepcidinas/metabolismo , Adenina , Anemia/tratamento farmacológico , Ferro , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Fibrose
12.
Curr Issues Mol Biol ; 44(5): 2243-2256, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35678681

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most common cancers in the world, and the incidence and death rate of OSCC in men is twice that of women. CD47 is a ubiquitous cell surface transmembrane protein, also known as integrin-related protein (IAP). Previous studies have pointed out that CD47 can inhibit the growth of OSCC, but the detailed mechanism is not clear. This study aimed to explore the effect of CD47 gene expression profiles in OSCC. The OSCC cell lines, OECM-1 and OC-2, overexpressed CD47, and the expression profiles of mRNAs were analyzed through next-generation sequencing (NGS) with a bioinformatic approach. A total of 14 differentially expressed genes (DEGs) were listed. In addition, ingenuity pathway analysis (IPA) was used to analyze the molecular function (MF), biological process (BP), and cellular component (CC) network signaling. The human protein atlas (HPA) database was used to analyze gene expression and the survivability of human cancer. The results found that HSPA5, HYOU1, and PDIA4 were involved in the IPA network and when highly expressed, mediated the survivability of cancer. In addition, HSPA5 was positively and significantly correlated with CD47 expression (p < 0.0001) and induced by CD47-overexpression in the OECM-1 and OC-2 OSCC cancer cell lines. These findings provide important insights into possible new diagnostic strategies, including unfolded protein for OSCC-targeting CD47.

13.
Sci Rep ; 12(1): 10513, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732647

RESUMO

Oral squamous cell carcinoma (OSCC) is a common malignant tumor worldwide that is characterized by abnormal lesions or malignant hyperplasia of soft and hard tissues in the oral cavity. Previous research has found that HDAC6 may be a potential therapeutic target for cancer patients and has the ability to regulate immune cells. However, the mechanism of HDAC6 in OSCC pathogenesis is unclear. We collected clinical samples and analyzed the level of HDAC6 in OSCC patients. The results showed that in the high HDAC6 expression group, HDAC6 expression was positively correlated with the grade of OSCC (R = 0.182, P = 0.036) and that this group had a 3.248-fold increase in the mortality risk compared with the low HDAC6 expression group (P = 0.003). Survival analysis also identified a correlation between the expression of HDAC6 and overall survival in OSCC patients, and it was found that the expression of HDAC6 was inversely correlated with survival (P ≤ 0.001). In addition, we found that HDAC6 induced IL-13 expression through AP-1, resulting in M2 polarization of macrophages. Together, these results demonstrate that the level of HDAC6 may be a useful prognostic biomarker and offer a novel immune cell-related therapeutic strategy of targeting IL-13 in OSCC.


Assuntos
Desacetilase 6 de Histona , Macrófagos , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Biomarcadores/metabolismo , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Humanos , Interleucina-13/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Fator de Transcrição AP-1/metabolismo
14.
Int J Food Microbiol ; 373: 109713, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35597005

RESUMO

The increasing demand for ready-to-eat fresh foods requires the use of non-thermal sterilization, hence, the application of antimicrobial peptides (AMPs) combined with ultrasound could serve as a novel food preservation method to prevent foodborne diseases. In this study, in silico tools were used to predict and screen potential AMPs from the antimicrobial amino acid sequence of myosin heavy chain of Larimichthys crocea. A novel AMP, designated as LCMHC, had strong antibacterial activity against Staphylococcus aureus when combined with low-intensity ultrasound treatment. The minimal inhibitory concentration (MIC) of LCMHC was 125 µg/mL when used alone but 31.25 µg/mL when combined with 0.3 W/cm2 ultrasound treatment. Structural analysis using circular dichroism (CD) revealed that peptide LCMHC has α-helical structure, which had slightly untwisting effect with increasing ultrasonic intensity. Transmission electron microscopy and permeability analysis of bacteria cell membrane showed that low-intensity ultrasound combined with peptide LCMHC could greatly improve the cell membrane permeability of S. aureus. Moreover, low intensity-ultrasound could assist the entry of more peptide LCMHC into bacterial cells to bind DNA. The findings here provide new insight into the potential application of peptide LCMHC combined with low-intensity ultrasound in the food industry.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia
15.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163437

RESUMO

Insulin-like growth factor 1 (IGF-1) not only regulates neuronal function and development but also is neuroprotective in the setting of acute ischemic stroke. G-protein-coupled receptor 17 (GPR17) expression in brain tissue serves as an indicator of brain damage. As whether IGF-1 regulates GPR17 expression remains unknown, the aim of this study is to investigate how IGF-1 regulates GPR17 expression in vitro. Human neuroblastoma SK-N-SH cells were used. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to mediate the silencing of FoxO1, while adenoviral vectors were used for its overexpression. Verification of the relevant signaling cascade was performed using a FoxO1 inhibitor (AS1842856), a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), and a GPR17 antagonist (cangrelor). Cell proliferation was analyzed using EdU staining; immunofluorescence staining was used to detect the expression and subcellular localization of FoxO1. Chromatin immunoprecipitation was used to analyze the binding of FoxO1 to the GPR17 promoter in SK-N-SH cells. The expression of FoxO1, GPR17, and protein kinase B (also known as Akt) mRNA and protein as well as the levels of FoxO1 and Akt phosphorylation were investigated in this study. IGF-1 was found to downregulate FoxO1 and GPR17 expression in SK-N-SH cells while promoting cell viability and proliferation. Inhibition of FoxO1 and antagonism of GPR17 were found to play a role similar to that of IGF-1. Silencing of FoxO1 by lentivirus-mediated shRNA resulted in the downregulation of FoxO1 and GPR17 expression. The overexpression of FoxO1 via adenoviral vectors resulted in the upregulation of FoxO1 and GPR17 expression. Blocking of PI3K signaling by LY294002 inhibited the effect of IGF-1 on GPR17 suppression. Results from chromatin immunoprecipitation revealed that IGF-1 promotes FoxO1 nuclear export and reduces FoxO1 binding to the GPR17 promoter in SK-N-SH cells. Here, we conclude that IGF-1 enhances cell viability and proliferation in SK-N-SH cells via the promotion of FoxO1 nuclear export and reduction of FoxO1 binding to the GPR17 promoter via PI3K/Akt signaling. Our findings suggest that the enhancement of IGF-1 signaling to antagonize GPR17 serves as a potential therapeutic strategy in the management of acute ischemic stroke.


Assuntos
Regulação para Baixo , Proteína Forkhead Box O1/genética , Fator de Crescimento Insulin-Like I/metabolismo , Neurônios/citologia , Receptores Acoplados a Proteínas G/genética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Técnicas de Inativação de Genes , Humanos , Lentivirus/fisiologia , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolonas/farmacologia , RNA Interferente Pequeno/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Acta Pharmacol Sin ; 43(5): 1251-1263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34417577

RESUMO

Transcriptional factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, is generally regarded as a pro-survival factor. Here, we identify that besides its effect on autophagy induction, TFEB exerts a pro-apoptotic effect in response to the cyclopentenone prostaglandin 15-deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2). Specifically, 15d-PGJ2 promotes TFEB translocation from the cytoplasm into the nucleus to induce autophagy and lysosome biogenesis via reactive oxygen species (ROS) production rather than mTORC1 inactivation. Surprisingly, TFEB promotes rather than inhibits apoptosis in response to 15d-PGJ2. Mechanistically, ROS-mediated TFEB translocation into the nucleus transcriptionally upregulates the expression of ATF4, which is required for apoptosis elicited by 15d-PGJ2. Additionally, inhibition of TFEB activation by ROS scavenger N-acetyl cysteine or inhibition of protein synthesis by cycloheximide effectively compromises ATF4 upregulation and apoptosis in response to 15d-PGJ2. Collectively, these results indicate that ROS-induced TFEB activation exerts a novel role in promoting apoptosis besides its role in regulating autophagy in response to 15d-PGJ2. This work not only evidences how TFEB is activated by 15d-PGJ2, but also unveils a previously unexplored role of ROS-dependent activation of TFEB in modulating cell apoptosis in response to 15d-PGJ2.


Assuntos
Prostaglandina D2 , Prostaglandinas , Apoptose , Autofagia , Ciclopentanos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Prostaglandinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
17.
BMC Urol ; 21(1): 149, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34736451

RESUMO

BACKGROUND: To explore whether opening the external urethral orifice in the coronal sulcus can reduce the incidence of epididymitis after operating on hypospadias with prostatic utricle cyst (PUC) connecting to the vas deferens. Group A consisted of 3 patients with severe hypospadias and PUC undergoing cystostomy, hypospadias correction and urethroplasty, along with the relocation of the external orifice of the urethra to the coronal sulcus. Group B consisted of 4 patients having initial hypospadias repaired with meatus in the orthotopic position in the glans, presenting with multiple epididymitis after hypospadias surgery and unsuccessful conservative treatment. MR confirmed that all the Group B patients had PUC connecting to the vas deferens. Group B patients underwent urethral dilatation along with urethral catheterization, cutting of the original corpus cavernosum that encapsulated the urethra, and extension of the position of the external urethral orifice to the coronal sulcus. RESULTS: In group A, 3 children underwent bladder fistula removal 2 weeks after the operation. The penis developed normally without any complications. Four children in group B underwent stent removal 12 weeks after operation, and one patient was still stenosed and dilated again. All patients in group B were followed without epididymitis recurrence. CONCLUSIONS: For patients with hypospadias complicating with a PUC, connecting to one side of the vas deferens, the positioning of the external urethral orifice in the coronary sulcus would be helpful to reduce the occurrence of epididymitis.


Assuntos
Cistos/cirurgia , Hipospadia/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Doenças Prostáticas/cirurgia , Procedimentos Cirúrgicos Urológicos Masculinos/métodos , Cateterismo , Pré-Escolar , Cistostomia , Cistos/complicações , Cistos/diagnóstico por imagem , Dilatação , Epididimite/etiologia , Epididimite/prevenção & controle , Humanos , Hipospadia/complicações , Hipospadia/diagnóstico por imagem , Masculino , Complicações Pós-Operatórias , Doenças Prostáticas/complicações , Doenças Prostáticas/diagnóstico por imagem , Procedimentos de Cirurgia Plástica/efeitos adversos , Stents , Procedimentos Cirúrgicos Urológicos Masculinos/efeitos adversos
18.
Front Physiol ; 12: 723690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603081

RESUMO

Chronic kidney disease (CKD) is a global public health problem with high morbidity and mortality. Decreased nicotinamide adenine dinucleotide (NAD+) levels were found to be associated with aging, cancer, and neurodegenerative and metabolic disorders. However, the alteration of renal NAD+ levels and biosynthesis pathways in CKD is less known. In the present study, we aimed to evaluate renal NAD+ levels and tested the expression of key enzymes in three NAD+ biosynthesis pathways in two different types of CKD rat model. CKD rat models were established by 5/6 nephrectomy (5/6 Nx) and feeding with adenine-containing feed, respectively. Renal function was assessed by serum creatinine (Scr) and blood urea nitrogen (BUN). Renal pathology was evaluated by periodic acid-Schiff (PAS) and Masson's trichrome staining. The expression of key enzymes in three NAD+ biosynthesis pathways was determined and quantified by Western blot analysis. The results showed CKD rat models were successfully established as evidenced by increased Scr and BUN levels, upregulation of neutrophil gelatinase-associated lipocalin (NGAL), glomerular hypertrophy, and renal fibrosis. Renal NAD+ and NADH content were both declined in two CKD rat models, and NAD+ levels were negatively correlated with Scr and BUN levels in CKD rats. Three key enzymes involved in NAD+ biosynthesis were significantly downregulated in the kidney of both of the two CKD models. They were quinolinate phosphoribosyltransferase (QPRT) in the de novo pathway, nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), and NMNAT3 in the salvage pathway. Moreover, the expression of NAD+-consuming enzymes sirtuin 3 (SIRT3) and CD38 decreased significantly in CKD rats. In conclusion, NAD+ biosynthesis was significantly impaired in CKD, which may attribute to downregulation of QPRT and NMNAT 1/3.

19.
Biomedicines ; 9(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572376

RESUMO

INTRODUCTION: Angiogenesis in the central nervous system is visible in animal models of neuroinflammation and bone cancer pain. However, whether spinal angiogenesis exists and contributes to central sensitization in neuropathic pain remains unclear. This study analyzes the impact of angiogenesis on spinal neuroinflammation in neuropathic pain. METHODS: Rats with chronic constriction injury (CCI) to the sciatic nerve underwent the implantation of an intrathecal catheter. Fumagillin or vascular endothelial growth factor-A antibody (anti-VEGF-A) was administered intrathecally. Nociceptive behaviors, cytokine immunoassay, Western blot, and immunohistochemical analysis assessed the effect of angiogenesis inhibition on CCI-induced neuropathic pain. RESULTS: VEGF, cluster of differentiation 31 (CD31), and von Willebrand factor (vWF) expressions increased after CCI in the ipsilateral lumbar spinal cord compared to that in the contralateral side of CCI and control rats from post-operative day (POD) 7 to 28, with a peak at POD 14. Tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 concentrations, but not IL-10 levels, also increased in the ipsilateral spinal cord after CCI. Fumagillin and anti-VEGF-A reduced CCI-induced thermal hyperalgesia from POD 5 to 14 and mechanical allodynia from POD 3 to 14. Fumagillin reduced CCI-upregulated expressions of angiogenic factors and astrocytes. Furthermore, fumagillin decreased TNF-α and IL-6 amounts and increased IL-10 levels at POD 7 and 14, but not IL-1ß concentrations. CONCLUSIONS: Fumagillin significantly ameliorates CCI-induced nociceptive sensitization, spinal angiogenesis, and astrocyte activation. Our results suggest that angiogenesis inhibitor treatment suppresses peripheral neuropathy-induced central angiogenesis, neuroinflammation, astrocyte activation, and neuropathic pain.

20.
ACS Biomater Sci Eng ; 7(9): 4569-4580, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34432981

RESUMO

Creating a pro-regenerative immune microenvironment around implant biomaterial surfaces is significant to osseointegration. Immune cells, especially macrophages that participate in the osseointegration, including osteogenesis, osteoclastogenesis, and angiogenesis, should be considered when testing biomaterials. In this study, we immobilized an antimicrobial peptide GL13K with immunomodulatory properties onto a titanium surface via silanization. The modified surfaces show good biocompatibility with bone mesenchymal stromal cells (BMSCs), human umbilical vein endothelial cells (HUVECs), and RAW264.7. By co-culturing BMSCs with RAW264.7, we found that the GL13K-coated titanium surfaces could promote late-stage osteogenesis as demonstrated by the upregulated expression of recombinant collagen type I alpha 1 (COL-1α1) and more extracellular matrix mineralization, while the early phase remained unchanged. The surfaces inhibited the osteoclastogenic differentiation of RAW264.7 cells by restraining nuclear factor-activated T cells, cytoplasmic 1 (NFATc1), the main factor of the receptor activator of nuclear factor-κ B, and the receptor activator of the nuclear factor-κ B ligand signaling pathway, from entering the nucleus and further reduced the expression of the activating osteoclastogenic tartrate-resistant acid phosphatase gene. Moreover, the GL13K-coated titanium surface demonstrated significant promotion of angiogenesis differentiation of HUVECs as indicated by the upregulated expression of essential angiogenesis function genes, including hypoxia-inducible factor-1α, endothelial nitric oxide synthase, kinase insert domain receptor, and vascular endothelial growth factor A (HIF-1α, eNOS, KDR, and VEGF-A). Taken together, these results demonstrated that the GL13K coating had properties of osteogenesis, angiogenesis, and anti-osteoclastogenesis via its immunomodulatory potential.


Assuntos
Osteogênese , Titânio , Cadeia alfa 1 do Colágeno Tipo I , Células Endoteliais da Veia Umbilical Humana , Humanos , Oligopeptídeos , Proteínas Citotóxicas Formadoras de Poros , Titânio/farmacologia , Fator A de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA