Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Hum Immunol ; 85(6): 111093, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243423

RESUMO

Chimeric antigen receptor (CAR) T cell therapy is a powerful adoptive immunotherapy against blood cancers, but the therapeutic effect was not efficient enough on solid tumors. B cells have been reported to play a critical role in regulating memory T differentiation and cytotoxic T development. However, as of yet the influence of such B cells on CAR T cells has not been discussed. In this study, using ephrin type-A receptor 2 (EphA2) specific CAR T cells, we cultured B cells successfully to stimulate CAR T cells in vitro, and investigated the cell differentiation and anti-tumor efficiency. We observed that EphA2-CAR T cells stimulated by B cells performed increased interferon γ (IFN γ) production and upregulated OX40 expression, as well as the enhanced anti-tumor activity and reduced PD-1 expression. The persistence of CAR T cells was enhanced after B cells stimulation for more than 7 days with the increased subset of central memory T cells (TCM). In addition, next generation sequencing was performed to explore the underlying mechanisms. The up-regulated genes clustered in, immune response activation, chemokine signaling pathway, calcium signaling pathway, cGMP-PKG signaling pathway and et al. which contributed to the upregulated anti-glioblastoma (GBM) activity of CAR T cells stimulated by B cell. Furthermore, MEF2C, CD40, SYK and TNFRSF13B were upregulated in CAR T cells after co-culturing with B cells. These genes functionally enriched in promoting lymphocytes proliferation and may contribute to the enhanced persistence of CAR T cells. In conclusion, these results indicated the critical role of B cells in prolonging CAR T cells longevity and enhancing anti-tumor activity, which paves the way for the therapeutic exploitation of EphA2-CAR T cells against GBM in the future.

2.
Int Immunopharmacol ; 138: 112645, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38972208

RESUMO

BACKGROUND: Pulmonary fibrosis is a progressive disease with high incidence and poor prognosis. It is urgent to explore new therapeutic methods for pulmonary fibrosis. As a new treatment method, gene therapy has attracted more and more attention. CCDC59 is a transcriptional coactivator of SP-B and SP-C. Our study mainly aims to explore the effect of overexpression of CCDC59 gene in pulmonary fibrosis of mice. METHODS: CCDC59 overexpressing lentivirus was constructed and then concentrated. RT-qPCR, Western blotting, and immunofluorescence assays were used to detect the expression of CCDC59, SP-B and SP-C protein in cell line and lung tissues after infected with lentivirus. Immunohistochemical staining and hematoxylin-eosin staining assays were used to assess the degree of fibrosis and ELISA assay was used to detect the concentrations of inflammatory factors, SP-B, and SP-C in bronchoalveolar lavage fluid of mice. Dynamic changes of mice lung function at various time points were assessed by lung function test assay. HIPPO pathway and proliferation capacity of alveolar type II epithelial cells were evaluated by immunofluorescence staining and Western blotting. RESULTS: Results showed that endotracheal instillation of CCDC59 overexpressed lentivirus significantly alleviated bleomycin-induced inflammation and pulmonary fibrosis in mice. Overexpression of CCDC59 protein in type II alveolar epithelial cells can enhance the expression of SP-B and SP-C. Overexpression of CCDC59 protein significantly protected against pulmonary inflammatory response and improved lung function of mice. Overexpression of CCDC59 protein significantly alleviated the hyperactivation of HIPPO pathway and increased the proliferative capacity of type II alveolar epithelial cells in lung. CONCLUSION: CCDC59 can alleviate inflammation and pulmonary fibrosis in mice by upregulating the expression of SP-B and SP-C in type II alveolar epithelial cells and alleviating the hyperactivation of HIPPO pathway. Our study offers a new potential treatment for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Proteína C Associada a Surfactante Pulmonar , Animais , Humanos , Masculino , Camundongos , Bleomicina , Modelos Animais de Doenças , Lentivirus/genética , Pulmão/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/terapia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , Proteína C Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo
3.
Int J Med Sci ; 21(9): 1718-1729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006833

RESUMO

Isoproterenol (ISO) administration is a well-established model for inducing myocardial injury, replicating key features of human myocardial infarction (MI). The ensuing inflammatory response plays a pivotal role in the progression of adverse cardiac remodeling, characterized by myocardial dysfunction, fibrosis, and hypertrophy. The Mst1/Hippo signaling pathway, a critical regulator of cellular processes, has emerged as a potential therapeutic target in cardiovascular diseases. This study investigates the role of Mst1 in ISO-induced myocardial injury and explores its underlying mechanisms. Our findings demonstrate that Mst1 ablation in cardiomyocytes attenuates ISO-induced cardiac dysfunction, preserving cardiomyocyte viability and function. Mechanistically, Mst1 deletion inhibits cardiomyocyte apoptosis, oxidative stress, and calcium overload, key contributors to myocardial injury. Furthermore, Mst1 ablation mitigates endoplasmic reticulum (ER) stress and mitochondrial fission, both of which are implicated in ISO-mediated cardiac damage. Additionally, Mst1 plays a crucial role in modulating the inflammatory response following ISO treatment, as its deletion suppresses pro-inflammatory cytokine expression and neutrophil infiltration. To further investigate the molecular mechanisms underlying ISO-induced myocardial injury, we conducted a bioinformatics analysis using the GSE207581 dataset. GO and KEGG pathway enrichment analyses revealed significant enrichment of genes associated with DNA damage response, DNA repair, protein ubiquitination, chromatin organization, autophagy, cell cycle, mTOR signaling, FoxO signaling, ubiquitin-mediated proteolysis, and nucleocytoplasmic transport. These findings underscore the significance of Mst1 in ISO-induced myocardial injury and highlight its potential as a therapeutic target for mitigating adverse cardiac remodeling. Further investigation into the intricate mechanisms of Mst1 signaling may pave the way for novel therapeutic interventions for myocardial infarction and heart failure.


Assuntos
Via de Sinalização Hippo , Isoproterenol , Infarto do Miocárdio , Miócitos Cardíacos , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Isoproterenol/efeitos adversos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos , Humanos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Remodelação Ventricular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas , Fator de Crescimento de Hepatócito
4.
Photodiagnosis Photodyn Ther ; 48: 104247, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871014

RESUMO

BACKGROUND: Prevention of high-risk HPV (HR-HPV) infection and effective medical intervention of persistent HPV infection and precancerous lesions are critical for the prevention of cervical cancer. AIMS: The aim of this retrospective comparative study was to evaluate the outcomes of ALA PDT and observation only in the management of low-grade squamous intraepithelial lesions (LSIL). METHODS: In PDT Group (n = 138), ALA PDT was applied to patients with colposcopic biopsy confirmed cervical LSIL accompanied with HR-HPV infection longer than 1 year or HPV 16/18 subtype infection. Cervical LSIL only patients received 3 times of ALA PDT and those with concurrent cervical canal or vaginal lesions received 6 times ALA PDT. Control Group (n = 69) received observation only. Colposcopy, TCT and HPV typing were performed before and after treatment. Patients were followed up for up to two years. RESULT: The observation group showed 26.1%, 34.8% and 53.6% HR-HPV negative conversion at 3-6, 12 and 24 months, respectively. LSIL regression rate of the observation group was 33.33%, 36.23% and 65.22% at 3-6, 12 and 24 months, respectively. There was 62.32%, 80.56% and 89.22% patients achieved HPV clearance at 3-6, 12 and 24 months after PDT treatment, respectively. The LSIL remission rate was 89.86%, 94.40% and 96.08% at 3-6, 12 and 24 months after ALA PDT, respectively. The abnormal TCT (≧ ASCUS) was reduced from 92% to 10.1%, 4.6% and 3.9% at 3-6, 12 and 24 months after ALA PDT, respectively. The patient age was not a factor affecting the clearance of HPV infection and the LSIL regression rate of PDT treatment. CONCLUSIONS: This study demonstrates that the application of multiple ALA PDT treatments has added value in achieving both short-term and long-term HPV and lesion clearance.


Assuntos
Ácido Aminolevulínico , Infecções por Papillomavirus , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Feminino , Fotoquimioterapia/métodos , Ácido Aminolevulínico/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Adulto , Estudos Retrospectivos , Pessoa de Meia-Idade , Infecções por Papillomavirus/tratamento farmacológico , Lesões Intraepiteliais Escamosas/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico
5.
Langmuir ; 40(20): 10676-10684, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38736194

RESUMO

Janus mesh with two-sided asymmetric wettability shows high potential for selective oil-water and emulsion separation. However, it remains a challenge to construct Janus mesh structures with good stability and extremely asymmetric wettability. Herein, a novel Janus mesh with asymmetric wettability was structured by two different precursors, polydimethylsiloxane/zinc oxide (PDMS/ZnO) and zinc oxide-polyacrylonitrile/N,N-dimethylformamide (ZnO-PAN/DMF), by electrostatic printing, including electrostatic air spraying and electrostatic spinning. The prepared Janus mesh has special micro-nanostructures on two sides, including PDMS@ZnO and ZnO@PAN. On the basis of gravity, when the placement direction is changed, Janus mesh can effectively separate oil-water mixtures of different densities and surfactant-stabilized oil-water emulsions. Meanwhile, the obtained Janus mesh exhibited good separation efficiency (>96.3%) for various oil-water mixtures, and the flux was up to 2621 ± 30 L m-2 h-1. The Janus mesh was cycled 20 times with no weakening in separation efficiency, indicating satisfactory cycling stability. The Janus mesh displayed good stability under harsh conditions (acidic, alkaline, and high temperature). The Janus mesh can realize low energy input and long-lasting oil-water separation, which has widespread application prospects in intelligent oil-water separation. This top-down electrostatic printing strategy provides a way to construct Janus interface materials with practical applications.

6.
J Am Chem Soc ; 146(19): 12895-12900, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696162

RESUMO

A nickel complex of chiral bisoxazolines catalyzed the stereoselective reductive arylation of ketones in high enantioselectivity. A range of common acyclic and cyclic ketones reacted without the aid of directing groups. Mechanistic studies using isolated complex of a chiral bis(oxazoline) (L)Ni(Ar)Br revealed that Mn reduction was not needed, while Lewis acidic titanium alkoxides were critical to ketone insertion.

7.
Drug Discov Today ; 29(6): 103995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670255

RESUMO

Calcium ion dysregulation exerts profound effects on various physiological activities such as tumor proliferation, migration, and drug resistance. Calcium-related channels play a regulatory role in maintaining calcium ion homeostasis, with most channels being highly expressed in tumor cells. Additionally, these channels serve as potential drug targets for the development of antitumor medications. In this review, we first discuss the current research status of these pathways, examining how they modulate various tumor functions such as epithelial-mesenchymal transition (EMT), metabolism, and drug resistance. Simultaneously, we summarize the recent progress in the study of novel small-molecule drugs over the past 5 years and their current status.


Assuntos
Antineoplásicos , Bloqueadores dos Canais de Cálcio , Canais de Cálcio , Transição Epitelial-Mesenquimal , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Canais de Cálcio/metabolismo , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Desenvolvimento de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos , Cálcio/metabolismo
8.
Eur J Nucl Med Mol Imaging ; 51(8): 2458-2466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38563882

RESUMO

PURPOSE: Positron emission tomography (PET) with prostate-specific membrane antigen (PSMA) targeting tracers has emerged as a valuable diagnostic tool for prostate cancer (PCa), androgen deprivation therapy (ADT) stands as the cornerstone treatment for advanced PCa, yet forecasting the response to hormonal therapy poses a significant clinical hurdle. METHODS: In a prospective cohort of 86 PCa patients undergoing short-term ADT, this study evaluated the prognostic potential of [18F]DCFPyL PET/CT scans. Comprehensive data encompassing clinical profiles, baseline prostate-specific antigen (PSA) levels, and imaging metrics were assessed. We developed predictive models for assessing decreases in PSA levels (PSA50 and PSA70) based on a combination of PET-related parameters and clinical factors. Kaplan-Meier survival analysis was utilized to ascertain the prognostic value of PET-based metrics. RESULTS: In this study, elevated [18F]DCFPyL uptake within the primary tumor, as indicated by a SUV ≥ 6.78 (p = 0.0024), and a reduction in the tumor volume (TV) of primary PSMA-avid tumor with PSMA-TV < 41.96 cm3 (p = 0.038), as well as an increased burden of metastatic PSMA-avid tumor, with PSMA-TV (PSMA-TV ≥ 71.39 cm3) (p = 0.012) were identified in association with diminished progression-free survival (PFS). PET and clinical parameters demonstrated constrained predictive capacity for PSA50 response as indicated by an area under the curve (AUC) of 0.442. CONCLUSION: Our study revealed that pretreatment [18F]DCFPyL uptake in primary or metastatic tumor sites is prognostically relevant in high-risk PCa patients undergoing ADT. Further research is needed to develop robust predictive models in this multifaceted landscape of PCa management.


Assuntos
Lisina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Antígeno Prostático Específico , Neoplasias da Próstata , Ureia , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Idoso , Antígeno Prostático Específico/sangue , Lisina/análogos & derivados , Ureia/análogos & derivados , Ureia/uso terapêutico , Pessoa de Meia-Idade , Antagonistas de Androgênios/uso terapêutico , Recidiva , Resultado do Tratamento
9.
J Gynecol Oncol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38670563

RESUMO

OBJECTIVE: Despite the availability of numerous treatment options, managing patients with platinum-resistant ovarian cancer (PROC) remains challenging, and the prognosis of PROC is notably unfavorable. This retrospective study aimed to assess the efficacy and safety of combined anlotinib-oral etoposide treatment for patients with PROC. METHODS: Data of 23 patients who were diagnosed with PROC from January 2020 to November 2022 and treated with anlotinib combined with oral etoposide for at least 2 cycles were retrospectively analyzed. RESULTS: Among per-protocol patients, 9 (45.0%; 95% confidence interval [CI]=21.1-68.9) of 20 patients achieved partial response and 17 (85.0%, 95% CI=67.9-100.0) of 20 patients achieved disease control. The median progression-free survival was 8.7 months (95% CI=5.3-11.6). The incidence of adverse events (any grade) was 100%, and the incidence of grade 3-4 adverse events was 54.5%. CONCLUSION: Anlotinib combined with etoposide emerged effective for the treatment of PROC.

10.
Front Pharmacol ; 15: 1362382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444942

RESUMO

Bile acids (BAs) constitute essential components of cholesterol metabolites that are synthesized in the liver, stored in the gallbladder, and excreted into the intestine through the biliary system. They play a crucial role in nutrient absorption, lipid and glucose regulation, and the maintenance of metabolic homeostasis. In additional, BAs have demonstrated the ability to attenuate disease progression such as diabetes, metabolic disorders, heart disease, and respiratory ailments. Intriguingly, recent research has offered exciting evidence to unveil their potential antitumor properties against various cancer cell types including tamoxifen-resistant breast cancer, oral squamous cell carcinoma, cholangiocarcinoma, gastric cancer, colon cancer, hepatocellular carcinoma, prostate cancer, gallbladder cancer, neuroblastoma, and others. Up to date, multiple laboratories have synthesized novel BA derivatives to develop potential drug candidates. These derivatives have exhibited the capacity to induce cell death in individual cancer cell types and display promising anti-tumor activities. This review extensively elucidates the anticancer activity of natural BAs and synthetic derivatives in cancer cells, their associated signaling pathways, and therapeutic strategies. Understanding of BAs and their derivatives activities and action mechanisms will evidently assist anticancer drug discovery and devise novel treatment.

11.
Int J Nanomedicine ; 19: 1431-1450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371455

RESUMO

Introduction: Basic fibroblast growth factor (bFGF) shows great potential for preventing vascular dementia (VD). However, the blood‒brain barrier (BBB) and low bioavailability of bFGF in vivo limit its application. The present study investigated how nasal administration of bFGF-loaded nanoliposomes (bFGF-lips) affects the impaired learning and cognitive function of VD mice and the underlying mechanism involved. Methods: A mouse model of VD was established through repeated cerebral ischemia‒reperfusion. A Morris water maze (MWM) and novel object recognition (NOR) tests were performed to assess the learning and cognitive function of the mice. Hematoxylin and eosin (HE) staining, Nissl staining and TUNEL staining were used to evaluate histopathological changes in mice in each group. ELISA and Western blot analysis were used to investigate the molecular mechanism by which bFGF-lips improve VD incidence. Results: Behavioral and histopathological analyses showed that cognitive function was significantly improved in the bFGF-lips group compared to the VD and bFGF groups; in addition, abnormalities and the apoptosis indices of hippocampal neurons were significantly decreased. ELISA and Western blot analysis revealed that bFGF-lips nasal administration significantly increased the concentrations of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), bFGF, B-cell lymphoma 2 (Bcl-2), phosphorylated protein kinase B (PAKT), nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H quinone oxidoreductase 1 (NQO1) and haem oxygenase-1 (HO-1) in the hippocampus of bFGF-lips mice compared with the VD and bFGF groups. Furthermore, the concentrations of malondialdehyde (MDA), caspase-3 and B-cell lymphoma 2-associated X (Bax) were clearly lower in the bFGF-lips group than in the VD and bFGF groups. Conclusion: This study confirmed that the nasal administration of bFGF-lips significantly increased bFGF concentrations in the hippocampi of VD mice. bFGF-lips treatment reduced repeated I/R-induced neuronal apoptosis by regulating apoptosis-related protein concentrations and activating the phosphatidylinositol-3-kinase (PI3K)/(AKT)/Nrf2 signaling pathway to inhibit oxidative stress.


Assuntos
Isquemia Encefálica , Demência Vascular , Camundongos , Animais , Demência Vascular/tratamento farmacológico , Demência Vascular/metabolismo , Demência Vascular/patologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Administração Intranasal , Estresse Oxidativo , Infarto Cerebral , Isquemia Encefálica/tratamento farmacológico , Cognição , Reperfusão , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose
12.
J Hepatol ; 80(6): 834-845, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331323

RESUMO

BACKGROUND & AIMS: Accumulating evidence has indicated the presence of mature microRNAs (miR) in the nucleus, but their effects on steatohepatitis remain elusive. We have previously demonstrated that the intranuclear miR-204-3p in macrophages protects against atherosclerosis, which shares multiple risk factors with metabolic dysfunction-associated steatotic liver disease (MASLD). Herein, we aimed to explore the functional significance of miR-204-3p in steatohepatitis. METHODS: miR-204-3p levels and subcellular localization were assessed in the livers and peripheral blood mononuclear cells of patients with MASLD. Wild-type mice fed high-fat or methionine- and choline-deficient diets were injected with an adeno-associated virus system containing miR-204-3p to determine the effect of miR-204-3p on steatohepatitis. Co-culture systems were applied to investigate the crosstalk between macrophages and hepatocytes or hepatic stellate cells (HSCs). Multiple high-throughput epigenomic sequencings were performed to explore miR-204-3p targets. RESULTS: miR-204-3p expression decreased in livers and macrophages in mice and patients with fatty liver. In patients with MASLD, miR-204-3p levels in peripheral blood mononuclear cells were inversely related to the severity of hepatic inflammation and damage. Macrophage-specific miR-204-3p overexpression reduced steatohepatitis in high-fat or methionine- and choline-deficient diet-fed mice. miR-204-3p-overexpressing macrophages inhibited TLR4/JNK signaling and pro-inflammatory cytokine release, thereby limiting fat deposition and inflammation in hepatocytes and fibrogenic activation in HSCs. Epigenomic profiling identified miR-204-3p as a specific regulator of ULK1 expression. ULK1 transcription and VPS34 complex activation by intranuclear miR-204-3p improved autophagic flux, promoting the anti-inflammatory effects of miR-204-3p in macrophages. CONCLUSIONS: miR-204-3p inhibits macrophage inflammation, coordinating macrophage actions on hepatocytes and HSCs to ameliorate steatohepatitis. Macrophage miR-204-3p may be a therapeutic target for MASLD. IMPACT AND IMPLICATIONS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic inflammatory disease ranging from simple steatosis to steatohepatitis. However, the molecular mechanisms underlying the progression of MASLD remain incompletely understood. Here, we demonstrate that miR-204-3p levels in circulating peripheral blood mononuclear cells are negatively correlated with disease severity in patients with MASLD. Nuclear miR-204-3p activates ULK1 transcription and improves autophagic flux, limiting macrophage activation and hepatic steatosis. Our study provides a novel understanding of the mechanism of macrophage autophagy and inflammation in steatohepatitis and suggests that miR-204-3p may act as a potential therapeutic target for MASLD.


Assuntos
Fígado Gorduroso , MicroRNAs , Animais , Camundongos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/etiologia , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética
13.
Science ; 383(6686): eabm9903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422126

RESUMO

All living organisms deploy cell-autonomous defenses to combat infection. In plants and animals, large supramolecular complexes often activate immune proteins for protection. In this work, we resolved the native structure of a massive host-defense complex that polymerizes 30,000 guanylate-binding proteins (GBPs) over the surface of gram-negative bacteria inside human cells. Construction of this giant nanomachine took several minutes and remained stable for hours, required guanosine triphosphate hydrolysis, and recruited four GBPs plus caspase-4 and Gasdermin D as a cytokine and cell death immune signaling platform. Cryo-electron tomography suggests that GBP1 can adopt an extended conformation for bacterial membrane insertion to establish this platform, triggering lipopolysaccharide release that activated coassembled caspase-4. Our "open conformer" model provides a dynamic view into how the human GBP1 defense complex mobilizes innate immunity to infection.


Assuntos
Bactérias , Infecções Bacterianas , Membrana Celular , Proteínas de Ligação ao GTP , Reconhecimento da Imunidade Inata , Humanos , Citocinas/química , Tomografia com Microscopia Eletrônica , Proteínas de Ligação ao GTP/química , Guanosina Trifosfato/química , Hidrólise , Imunidade Celular , Microscopia Crioeletrônica , Gasderminas/química , Proteínas de Ligação a Fosfato/química , Conformação Proteica , Membrana Celular/química , Membrana Celular/imunologia , Caspases Iniciadoras/química , Infecções Bacterianas/imunologia , Bactérias/imunologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38085929

RESUMO

BACKGROUND: Previous observational studies have been controversial regarding the association of leukocyte telomere length (LTL) with prostate cancer (PCa) and benign prostatic hyperplasia (BPH). METHODS: First, we conducted an observational study utilizing UK Biobank data. The correlation between LTL and the risk of PCa and BPH was evaluated via multivariate-adjusted logistic regression. Then, we conducted a 2-sample Mendelian randomization to examine causal links between LTL (472 174 individuals) and PCa as well as BPH. To verify the reliability of the primary analysis, we conducted a second analysis and sensitivity analyses. RESULTS: In the UK Biobank study, individuals in the longer quartiles of LTL were observed to have a higher risk of PCa (1.155-fold to 1.349-fold, all p < .001) and BPH (1.119-fold to 1.212-fold, all p < .001) compared to those in the lowest quartile in multivariate-adjusted logistic regression. We observed that genetically predicted longer LTL resulted in a 1.427-fold risk of PCa (odds ratio [OR] = 1.427, 95% confidence interval [CI] = 1.197-1.702, p < .001) and 1.539-fold risk of BPH (OR = 1.539, 95% CI = 1.387-1.707, p < .001) in the primary analysis. In the second analysis, the results also indicated that longer LTL increased the genetic liability to both PCa (OR = 1.338, 95% CI = 1.189-1.507, p < .001) and BPH (OR = 1.006, 95% CI = 1.003-1.008, p < .001). Sensitivity analyses also supported the reliability of the results. CONCLUSIONS: Our study provides convincing evidence supporting that longer LTL increases the risk of PCa and BPH in European individuals. Large-scale studies are needed to elucidate the potential mechanisms of LTL in PCa and BPH occurrence.


Assuntos
Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Hiperplasia Prostática/genética , Análise da Randomização Mendeliana , Bancos de Espécimes Biológicos , Reprodutibilidade dos Testes , Biobanco do Reino Unido , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , Leucócitos , Telômero , Estudo de Associação Genômica Ampla
15.
Bioorg Chem ; 143: 107025, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103332

RESUMO

Two novel naturally occurring [4 + 2] Diels-Alder cycloaddition ergosteroids (1 and 2), three undescribed oxidized ergosteroids (3-5), and eleven known analogs (6-16) were isolated from Penicillium herquei. Compounds 1 and 2 represent the first reported cycloadducts of a steroid with 1,4,6-trimethyl-1,6-dihydropyridine-2,5-dione or 4,6-dimethyl-1,6-dihydropyridine-2,5-dione to date. Compound 3 is the C-15 epimer of (22E,24R)-9α,11ß-dihydroxyergosta-4,6,8(14),22-tetraen-3-one (14). The chemical structures of these compounds were elucidated through widespread spectroscopic analyses, mainly including HRESIMS and 1D and 2D NMR data, calculated 13C NMR-DP4+ analysis, and electronic circular dichroism (ECD) data analyses. Biological evaluations of Compounds 1-16 revealed that 3, 9-11, and 15 inhibited the production of NO in LPS-induced RAW264.7 cells with an IC50 value from 7.37 ± 0.69 to 38.9 ± 2.25 µM (the positive control dexamethasone IC50: 9.54 ± 0.71 µM). In addition, Compound 3 exhibited a potent inhibitory effect on the secretion of the proinflammatory cytokines TNF-α and IL-6, the transcription level of the proinflammatory macrophage markers TNF-α, and the expression of the iNOS protein.


Assuntos
Di-Hidropiridinas , Penicillium , Reação de Cicloadição , Fator de Necrose Tumoral alfa , Penicillium/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
16.
Anal Chim Acta ; 1284: 341968, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37996155

RESUMO

Many endogenous antioxidants, including glutathione (GSH), cysteine (Cys), cysteinyl-glycine (Cys-Gly) and homocysteine (Hcy) possess free thiol functional groups. In most cases, matrix-assisted laser desorption ionization (MALDI) analyses of trace amounts of thiol compounds are challenging because of their instability and poor ionization properties. We present a mass spectrometry imaging (MSI) approach for mapping of thiol compounds on brain tissue sections. Our derivatization reagents 1-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-2,4,6-trimethylpyridinium (MTMP) and 1-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-2,4,5-triphenylpyridinium (MTPP) facilitate the covalent charge-tagging of molecules containing free thiol group for the selective and rapid detection of GSH synthesis and metabolic pathway related metabolites by MALDI-MSI. The developed thiol-specific mass spectrometry imaging method realizes the quantitative detection of exogenous N-acetylcysteine tissue sections, and the detection limit in mass spectrometry imaging could reach 0.05 ng. We illustrate the capabilities of the developed method to mapping of thiol compounds on brain tissue from the chronic social defeat stress (CSDS) depression model mice.


Assuntos
Glutationa , Compostos de Sulfidrila , Camundongos , Animais , Compostos de Sulfidrila/análise , Glutationa/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acetilcisteína , Compostos de Enxofre
17.
Heliyon ; 9(11): e21344, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034632

RESUMO

Despite the deployment of specific breast cancer screening strategies, breast cancer incidence rates have escalated significantly over recent decades. In a bid to reverse this trend, scientists have engaged in extensive epidemiological research into breast cancer prevalence, identifying numerous individual risk factors and promoting population-wide health education. Coupled with advances in genetic testing, risk prediction models based on breast cancer genes have been developed, albeit with inherent limitations. In the new millennium, the emergence of artificial intelligence (AI) as a dominant technological force suggests that breast cancer prediction models developed with AI may represent the next frontier in research.

18.
Sci Rep ; 13(1): 20969, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017264

RESUMO

Hepatocellular carcinoma (HCC) is a lethal malignancy worldwide with an increasing number of new cases each year. Apolipoprotein (APOL) isoforms have been explored for their associations with HCC.The GSE14520 cohort was used for training data; The Cancer Genome Atlas (TCGA) database was used for validated data. Diagnostic, prognostic significance and mechanisms were explored using these cohorts. Risk score models and nomograms were constructed using prognosis-related isoforms and clinical factors for survival prediction. Oncomine and HCCDB databases were further used for validation of diagnostic, prognostic significance. APOL1, 3, and 6 were differentially expressed in two cohorts (all P ≤ 0.05). APOL1 and APOL6 had diagnostic capacity whereas APOL3 and APOL6 had prognostic capacity in two cohorts (areas under curves [AUCs] > 0.7, P ≤ 0.05). Mechanism studies demonstrated that APOL3 and APOL6 might be involved in humoral chemokine signaling pathways (all P ≤ 0.05). Risk score models and nomograms were constructed and validated for survival prediction of HCC. Moreover, diagnostic values of APOL1 and weak APOL6 were validated in Oncomine database (AUC > 0.700, 0.694); prognostic values of APOL3 and APOL6 were validated in HCCDB database (all P < 0.05). Differentially expressed APOL1 and APOL6 might be diagnostic biomarkers; APOL3 and APOL6 might be prognostic biomarkers of RFS and OS for HCC via chemokine signaling pathways.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Apolipoproteína L1/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Isoformas de Proteínas , Biomarcadores , Quimiocinas , Prognóstico
19.
Biomedicines ; 11(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37893139

RESUMO

The Neural Calcium Sensor1 (NCS1) is a crucial protein that binds to Ca2+ and is believed to play a role in regulating tumor invasion and cell proliferation. However, the role of NCS1 in immune infiltration and cancer prognosis is still unknown. Our study aimed to explore the expression profile, immune infiltration pattern, prognostic value, biological function, and potential compounds targeting NCS1 using public databases. High expression of NCS1 was detected by immune histochemical staining in LIHC (Liver hepatocellular carcinoma), BRCA (Breast invasive carcinoma), KIRC (Kidney renal clear cell carcinoma), and SKCM (Skin Cutaneous Melanoma). The expression of NCS1 in cancer was determined by TCGA (The Cancer Genome Atlas Program), GTEx (The Genotype-Tissue Expression), the Kaplan-Meier plotter, GEO (Gene Expression Omnibus), GEPIA2.0 (Gene Expression Profiling Interactive Analysis 2.0), HPA (The Human Protein Atlas), UALCAN, TIMER2.0, TISIDB, Metascape, Drugbank, chEMBL, and ICSDB databases. NCS1 has genomic mutations as well as aberrant DNA methylation in multiple cancers compared to normal tissues. Also, NCS1 was significantly different in the immune microenvironment, tumor mutational burden (TMB), microsatellite instability (MSI), and immune infiltrate-associated cells in different cancers, which could be used for the typing of immune and molecular subtypes of cancer and the presence of immune checkpoint resistance in several cancers. Univariate regression analysis, multivariate regression analysis, and gene enrichment analysis to construct prognostic models revealed that NCS1 is involved in immune regulation and can be used as a prognostic biomarker for SKCM, LIHC, BRCA, COAD, and KIRC. These results provide clues from a bioinformatic perspective and highlight the importance of NCS1 in a variety of cancers.

20.
Front Immunol ; 14: 1269451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868994

RESUMO

Regulation of cell mortality for disease treatment has been the focus of research. Ferroptosis is an iron-dependent regulated cell death whose mechanism has been extensively studied since its discovery. A large number of studies have shown that regulation of ferroptosis brings new strategies for the treatment of various benign and malignant diseases. Iron excess and lipid peroxidation are its primary metabolic features. Therefore, genes involved in iron metabolism and lipid metabolism can regulate iron overload and lipid peroxidation through direct or indirect pathways, thereby regulating ferroptosis. In addition, glutathione (GSH) is the body's primary non-enzymatic antioxidants and plays a pivotal role in the struggle against lipid peroxidation. GSH functions as an auxiliary substance for glutathione peroxidase 4 (GPX4) to convert toxic lipid peroxides to their corresponding alcohols. Here, we reviewed the researches on the mechanism of ferroptosis in recent years, and comprehensively analyzed the mechanism and regulatory process of ferroptosis from iron metabolism and lipid metabolism, and then described in detail the metabolism of GPX4 and the main non-enzymatic antioxidant GSH in vivo.


Assuntos
Ferroptose , Sobrecarga de Ferro , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferro/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/fisiologia , Antioxidantes/metabolismo , Glutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA