Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 139: 112695, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39024751

RESUMO

Innate immunity serves as the first line of host defense in the body against pathogenic infections or malignant diseases. Reactive oxygen species (ROS), as vital signaling mediators, can efficiently elicit innate immune responses to oxidative-related stress or damage. In the era of nanomedicine, various immunostimulatory nanosystems have been extensively designed and synthesized to elicit immune responses for the immunotherapy of cancer or infectious diseases. In this review, we emphasize that ROS derived from nanosystems regulates innate immune cells to potentiate immunotherapeutic efficacy, such as primarily dendritic cells, macrophages, or natural killer cells. Meanwhile, we also summarize the pathway of ROS generation triggered by exogenous nanosystems in innate immune cells of DCs, macrophages, and NK cells.


Assuntos
Imunidade Inata , Imunoterapia , Células Matadoras Naturais , Macrófagos , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Imunoterapia/métodos , Animais , Macrófagos/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Nanopartículas/química , Nanomedicina , Células Dendríticas/imunologia
2.
Adv Mater ; 36(5): e2310979, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994277

RESUMO

The immunomodulatory effect of divalent manganese cations (Mn2+ ), such as activation of the cGAS-STING pathway or NLRP3 inflammasomes, positions them as adjuvants for cancer immunotherapy. In this study, it is found that trace Mn2+ ions, bound to bovine serum albumin (BSA) to form Mn@BSA nanocomplexes, stimulate pro-inflammatory responses in human- or murine-derived macrophages through TLR4-mediated signaling cascades. Building on this, the assembly of Mn@BSA nanocomplexes to obtain nanowire structures enables stronger and longer-lasting immunostimulation of macrophages by regulating phagocytosis. Furthermore, Mn@BSA nanocomplexes and their nanowires efficiently activate peritoneal macrophages, reprogramme tumor-associated macrophages, and inhibit the growth of melanoma tumors in vivo. They also show better biosafety for potential clinical applications compared to typical TLR4 agonists such as lipopolysaccharides. Accordingly, the findings provide insights into the mechanism of metalloalbumin complexes as potential TLR agonists that activate macrophage polarization and highlight the importance of their nanostructures in regulating macrophage-mediated innate immunity.


Assuntos
Nanofios , Receptor 4 Toll-Like , Camundongos , Humanos , Animais , Receptor 4 Toll-Like/metabolismo , Manganês , Macrófagos/metabolismo , Soroalbumina Bovina/química
3.
ACS Nano ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598186

RESUMO

The development of nanosystems with intrinsic immunomodulatory effects on macrophage polarization is important for the macrophage-targeted immunotherapy. Here, mitochondria-targeted bovine serum albumins (BSAs) via the conjugation of fluorescent, lipophilic, and cationic rhodamine 110 molecules can efficiently enhance the gene expression of the proinflammatory phenotype of macrophages and correspondingly inhibit the gene expression of their anti-inflammatory phenotype. On this basis, porous silicon nanocarriers can further boost the immunomodulation of these mitochondria-targeted BSAs in vitro or in vivo, accompanied by the secretion of proinflammatory mediators including tumor necrosis factor α, nitric oxide, and reactive oxygen species (ROS). Meanwhile, BSA coatings can also improve the biocompatibility of porous silicon nanoparticulate cores on macrophages. Finally, the mechanism investigations demonstrate that porous silicon nanocarriers can efficiently deliver mitochondria-targeted BSA into macrophages to generate mitochondrial ROS via the interference with mitochondrial respiratory chains, which can further trigger the downstream signaling transduction pathways for the proinflammatory transition. Considering the good biosafety and versatile loading capability, this developed porous silicon@BSA nanosystem with a strong proinflmmatory regulatory effect has important potential on the combinatorial chemoimmunotherapy against cancer or viral/bacterial-related infectious diseases.

4.
J Proteomics ; 154: 78-84, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28007617

RESUMO

Traditional methods for thalassemia screening are time-consuming and easily affected by cell hemolysis or hemoglobin degradation in stored blood samples. Tandem mass spectrometry (MS/MS) proved to be an effective technology for sickle cell disorders (SCD) screening. Here, we developed a novel MS/MS method for ß-thalassemia screening from dried blood spots (DBS). Stable isotopic-labeled peptides were used as internal standards for quantification and calculation of the α:ß-globin ratios. We used the α:ß-globin ratio cutoffs to differentiate between normal individuals and patients with thalassemia. About 781 patients and 300 normal individuals were analyzed. The α:ß-globin ratios showed significant difference between normal and ß-thalassemia patients (P<0.01), particularly when the disease was homozygous or double heterozygous with another α- or ß-thalassemia mutation. In the parallel study, all cases screened for suspected thalassemia from six hundred DBS samples by using this MS/MS method were successfully confirmed by genotyping. The intra-assay and inter-assay CVs of the ratios ranged from 2.4% to 3.9% and 4.7% to 7.1%, and there was no significant sample carryover or matrix effect for this MS/MS method. Combined with SCD screening, this MS/MS method could be used as a first-line screening assay for both structural and expression abnormalities of human hemoglobin. BIOLOGICAL SIGNIFICANCE: Traditional methods for thalassemia screening were depending on the structural integrity of tetramers and could be affected by hemolysis and degradation of whole blood samples, especially when stored. We used proteospecific peptides produced by the tryptic digestion of each globin to evaluate the production ratio between α- and ß-globin chains, which turned out to be quite stable even when stored for more than two months. Though most of the peptides were specific to α-globin or ß-globin, we only chose four most informative peptides and its stable isotopic-labeled peptides as internal standards for analysis, which could obtain a high accuracy. Currently, we are the first to address the application of MS/MS for thalassemia screening, when combined with SCD screening, this MS/MS method could be used as a first-line screening assay for both structural and expression abnormalities of human hemoglobin.


Assuntos
Espectrometria de Massas em Tandem/métodos , Talassemia beta/diagnóstico , Coleta de Amostras Sanguíneas/métodos , Estudos de Casos e Controles , Genótipo , Humanos , Programas de Rastreamento/métodos , Sensibilidade e Especificidade , alfa-Globinas/análise , Globinas beta/análise , Talassemia beta/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA