Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519786

RESUMO

Cancers commonly reprogram translation and metabolism, but little is known about how these two features coordinate in cancer stem cells. Here we show that glioblastoma stem cells (GSCs) display elevated protein translation. To dissect underlying mechanisms, we performed a CRISPR screen and identified YRDC as the top essential transfer RNA (tRNA) modification enzyme in GSCs. YRDC catalyzes the formation of N6-threonylcarbamoyladenosine (t6A) on ANN-decoding tRNA species (A denotes adenosine, and N denotes any nucleotide). Targeting YRDC reduced t6A formation, suppressed global translation and inhibited tumor growth both in vitro and in vivo. Threonine is an essential substrate of YRDC. Threonine accumulated in GSCs, which facilitated t6A formation through YRDC and shifted the proteome to support mitosis-related genes with ANN codon bias. Dietary threonine restriction (TR) reduced tumor t6A formation, slowed xenograft growth and augmented anti-tumor efficacy of chemotherapy and anti-mitotic therapy, providing a molecular basis for a dietary intervention in cancer treatment.

2.
Nature ; 617(7962): 818-826, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198486

RESUMO

Cancer cells rewire metabolism to favour the generation of specialized metabolites that support tumour growth and reshape the tumour microenvironment1,2. Lysine functions as a biosynthetic molecule, energy source and antioxidant3-5, but little is known about its pathological role in cancer. Here we show that glioblastoma stem cells (GSCs) reprogram lysine catabolism through the upregulation of lysine transporter SLC7A2 and crotonyl-coenzyme A (crotonyl-CoA)-producing enzyme glutaryl-CoA dehydrogenase (GCDH) with downregulation of the crotonyl-CoA hydratase enoyl-CoA hydratase short chain 1 (ECHS1), leading to accumulation of intracellular crotonyl-CoA and histone H4 lysine crotonylation. A reduction in histone lysine crotonylation by either genetic manipulation or lysine restriction impaired tumour growth. In the nucleus, GCDH interacts with the crotonyltransferase CBP to promote histone lysine crotonylation. Loss of histone lysine crotonylation promotes immunogenic cytosolic double-stranded RNA (dsRNA) and dsDNA generation through enhanced H3K27ac, which stimulates the RNA sensor MDA5 and DNA sensor cyclic GMP-AMP synthase (cGAS) to boost type I interferon signalling, leading to compromised GSC tumorigenic potential and elevated CD8+ T cell infiltration. A lysine-restricted diet synergized with MYC inhibition or anti-PD-1 therapy to slow tumour growth. Collectively, GSCs co-opt lysine uptake and degradation to shunt the production of crotonyl-CoA, remodelling the chromatin landscape to evade interferon-induced intrinsic effects on GSC maintenance and extrinsic effects on immune response.


Assuntos
Histonas , Lisina , Neoplasias , Processamento de Proteína Pós-Traducional , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/deficiência , Lisina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , RNA de Cadeia Dupla/imunologia , Humanos , Animais , Camundongos , Interferon Tipo I/imunologia
3.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36795488

RESUMO

Glioblastoma is the most malignant primary brain tumor, the prognosis of which remains dismal even with aggressive surgical, medical, and radiation therapies. Glioblastoma stem cells (GSCs) promote therapeutic resistance and cellular heterogeneity due to their self-renewal properties and capacity for plasticity. To understand the molecular processes essential for maintaining GSCs, we performed an integrative analysis comparing active enhancer landscapes, transcriptional profiles, and functional genomics profiles of GSCs and non-neoplastic neural stem cells (NSCs). We identified sorting nexin 10 (SNX10), an endosomal protein sorting factor, as selectively expressed in GSCs compared with NSCs and essential for GSC survival. Targeting SNX10 impaired GSC viability and proliferation, induced apoptosis, and reduced self-renewal capacity. Mechanistically, GSCs utilized endosomal protein sorting to promote platelet-derived growth factor receptor ß (PDGFRß) proliferative and stem cell signaling pathways through posttranscriptional regulation of the PDGFR tyrosine kinase. Targeting SNX10 expression extended survival of orthotopic xenograft-bearing mice, and high SNX10 expression correlated with poor glioblastoma patient prognosis, suggesting its potential clinical importance. Thus, our study reveals an essential connection between endosomal protein sorting and oncogenic receptor tyrosine kinase signaling and suggests that targeting endosomal sorting may represent a promising therapeutic approach for glioblastoma treatment.


Assuntos
Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Nexinas de Classificação/genética , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Proteínas Tirosina Quinases/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo
4.
Chem Asian J ; 17(16): e202200342, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35713953

RESUMO

Intravesical instillation of chemotherapeutic drugs such as epirubicin (EPI) is routinely used to prevent tumor recurrence and progression after transurethral resection of bladder tumor. However, the lack of tumor selectivity often causes severe damage to normal bladder urothelium leading to intolerable side effects. Here, we analyzed abnormal changes in glycosylation in bladder cancer and identified mannose as the most aberrantly expressed glycan on the surface of bladder cancer cell lines and human bladder tumor tissues. We then constructed a lectin-drug conjugate by linking concanavalin A (ConA) - a lectin that specifically binds to mannose, with EPI through a pH-sensitive linker. This ConA-EPI conjugate conferred EPI with mannose-targeting ability and selectively internalized cancer cells in vitro. This conjugate showed selective cytotoxicity to cancer cells in vitro and better antitumor activity in an orthotopic mouse model of bladder cancer. Our lectin-drug conjugation strategy makes targeted intravesical chemotherapy of bladder cancer possible.


Assuntos
Neoplasias da Bexiga Urinária , Administração Intravesical , Animais , Antibióticos Antineoplásicos , Concanavalina A/farmacologia , Epirubicina/efeitos adversos , Humanos , Manose , Camundongos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/cirurgia
5.
Autophagy ; 17(11): 3592-3606, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33629929

RESUMO

Glioma is the most common primary malignant brain tumor with poor survival and limited therapeutic options. The non-psychoactive phytocannabinoid cannabidiol (CBD) has been shown to be effective against glioma; however, the molecular target and mechanism of action of CBD in glioma are poorly understood. Here we investigated the molecular mechanisms underlying the antitumor effect of CBD in preclinical models of human glioma. Our results showed that CBD induced autophagic rather than apoptotic cell death in glioma cells. We also showed that CBD induced mitochondrial dysfunction and lethal mitophagy arrest, leading to autophagic cell death. Mechanistically, calcium flux induced by CBD through TRPV4 (transient receptor potential cation channel subfamily V member 4) activation played a key role in mitophagy initiation. We further confirmed TRPV4 levels correlated with both tumor grade and poor survival in glioma patients. Transcriptome analysis and other results demonstrated that ER stress and the ATF4-DDIT3-TRIB3-AKT-MTOR axis downstream of TRPV4 were involved in CBD-induced mitophagy in glioma cells. Lastly, CBD and temozolomide combination therapy in patient-derived neurosphere cultures and mouse orthotopic models showed significant synergistic effect in both controlling tumor size and improving survival. Altogether, these findings showed for the first time that the antitumor effect of CBD in glioma is caused by lethal mitophagy and identified TRPV4 as a molecular target and potential biomarker of CBD in glioma. Given the low toxicity and high tolerability of CBD, we therefore propose CBD should be tested clinically for glioma, both alone and in combination with temozolomide.Abbreviations: 4-PBA: 4-phenylbutyrate; AKT: AKT serine/threonine kinase; ATF4: activating transcription factor 4; Baf-A1: bafilomycin A1; CANX: calnexin; CASP3: caspase 3; CAT: catalase; CBD: cannabidiol; CQ: chloroquine; DDIT3: DNA damage inducible transcript 3; ER: endoplasmic reticulum; GBM: glioblastoma multiforme; GFP: green fluorescent protein; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PARP1: poly(ADP-ribose) polymerase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; SLC8A1: solute carrier family 8 member A1; SQSTM1: sequestosome 1; TCGA: The cancer genome atlas; TEM: transmission electron microscopy; TMZ: temozolomide; TRIB3: tribbles pseudokinase 3; TRPC: transient receptor potential cation channel subfamily C; TRPV4: transient receptor potential cation channel subfamily V member 4.


Assuntos
Canabidiol/uso terapêutico , Glioma/tratamento farmacológico , Mitofagia/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Morte Celular Autofágica/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Canabidiol/farmacologia , Linhagem Celular Tumoral , Glioma/metabolismo , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transplante de Neoplasias , Canais de Cátion TRPV/fisiologia , Temozolomida/farmacologia
6.
J Biol Inorg Chem ; 26(1): 123-133, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33449164

RESUMO

LCN2 (Lipocalins) was first identified as iron transporter through associating with its siderophores and also involved in many cancer metastases, but its function is still paradoxical. We questioned that whether LCN2 might also associate exogenous iron chelator as does in inherent way and the association may influence their respective function. To address this issue, we investigated the effect of LCN2 on action of DpdtC (2,2'-dipyridine ketone hydrazone dithiocarbamte), an iron chelator in proliferation and metastasis-related gene expression. The results showed that exogenous LCN2 and DpdtC could inhibit growth of HepG2 cells, while the combination treatment enhanced their inhibitory effect both in proliferation and colony formation. This encouraged us to investigate the effect of the interaction on metastasis-related gene expression. The results revealed that both LCN2 and DpdtC impaired the wound healing of HepG2, but the inhibitory effect of DpdtC was significantly enhanced upon association with LCN2. Undergoing epithelium-mesenchymal transition (EMT) is a crucial step for cancer metastasis, LCN2 and DpdtC had opposite effects on EMT markers, the binding of DpdtC to LCN2 significantly weakened the regulation of it (or its iron chelate) on EMT markers. To insight into the interaction between LCN2 and DpdtC-iron, fluorescence titration and molecular docking were performed to obtain the association constant (~ 104 M-1) and thermodynamic parameters (ΔG = - 26.10 kJ/mol). Importantly this study provided evidence that siderophores-loading state of LCN2 may influence its function, which be helpful for understanding the contradictory role of LCN2 in the metastasis of cancer.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ditiocarb/análogos & derivados , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quelantes de Ferro/farmacologia , Lipocalina-2/metabolismo , Autofagia/efeitos dos fármacos , Ditiocarb/farmacologia , Ferritinas/metabolismo , Células Hep G2 , Humanos , Hidrazonas/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tiocarbamatos/farmacologia , Canais de Potencial de Receptor Transitório
7.
Mol Genet Genomic Med ; 8(12): e1521, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33155773

RESUMO

OBJECTIVE: This study aimed to identify critical genes involved in the tumor biology of lung cancer via datamining of The Cancer Genome Atlas (TCGA) with special focus on gene copy number variation. METHODS: Genomic deletion and amplification were analyzed with cBioportal online tools. Relative expression of Cyclin Dependent Kinase Inhibitor 2A (CDKN2A) was analyzed by both real-time polymerase chain reaction (PCR) and Western blot. The abundance of methylthioadenosine phosphorylase (MTAP) and epithelial-mesenchymal transition markers were analyzed by real-time PCR. Cell proliferation was determined by cell counting kit-8 method and cell viability was measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell migration and invasion were measured with transwell chamber assay, and migrative capacity was further evaluated by wound healing assay. RESULTS: We found the frequent loss of CDKN2A was associated with its downregulation in lung cancer, and siRNA-mediated CDNKN2A knockdown significantly stimulated cell proliferation, invasion, and migration. Mechanistically, we unraveled that MTAP, which was positively correlated with CDKN2A, predominantly mediated the antitumoral function of CDKN2A in lung cancer. CONCLUSION: Our study consolidated the involvement of CDKN2A-MTAP signaling in the context of lung cancer.


Assuntos
Biomarcadores Tumorais/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Pulmonares/genética , Células A549 , Biomarcadores Tumorais/deficiência , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Cromossomos Humanos Par 9/genética , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Purina-Núcleosídeo Fosforilase/metabolismo
8.
Mol Cell Biochem ; 473(1-2): 193-202, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32734536

RESUMO

Long non-coding RNAs (lncRNAs) are proved to perform critical function in regulating cancer cell behavior. It is reported that LINC00324 promotes lung adenocarcinoma development by regulating miR-615-5p/AKT1 axis. This study aimed to demonstrate whether LINC00324 participates in non-small cell lung cancer (NSCLC) pathogenesis through other molecular mechanism. Relative mRNA, lncRNA, and microRNA levels were analyzed using quantitative real-time-polymerase chain reaction (qRT-PCR). Western blot was used to detect protein level. MTT assay shown proliferation ability and transwell assay shown invasive ability. Luciferase reporter assay illustrated the interaction between RNA molecules. In NSCLC, the high expression of LINC00324 had correlation with the poor prognosis. LINC00324 promoted the proliferation and invasion of NSCLC cells while miR-139-5p inhibited these behaviors. LINC00324 overexpression promoted insulin-like growth factor 1 receptor (IGF1R) expression via absorbing miR-139-5p. The tumor-promoting effects of LINC00324 were attenuated through miR-139-5p overexpression. Highly expressed LINC00324 in NSCLC through sponged miR-139-5p to elevate IGF1R expression and promoted cell proliferation and invasion. This research demonstrated that LINC00324 is a potential NSCLC diagnosis and therapy target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , MicroRNAs/biossíntese , Proteínas de Neoplasias/biossíntese , RNA Longo não Codificante/biossíntese , RNA Neoplásico/biossíntese , Receptor IGF Tipo 1/biossíntese , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/genética , Invasividade Neoplásica , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Receptor IGF Tipo 1/genética
9.
PLoS One ; 14(9): e0215886, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31557166

RESUMO

The progression of cancer through local expansion and metastasis is well recognized, but preventing these characteristic cancer processes is challenging. To this end, a new strategy is required. In this study, we presented a novel dual functional podophyllotoxin derivative, 2-pyridinealdehyde hydrazone dithiocarbamate S-propionate podophyllotoxin ester (PtoxPdp), which inhibited both matrix metalloproteinases and Topoisomerase II. This new podophyllotoxin derivative exhibited significant anti-proliferative, anti-metastatic that correlated with the downregulation of matrix metalloproteinase. In a xenograft animal local expansion model, PtoxPdp was superior to etoposide in tumor repression. A preliminary mechanistic study revealed that PtoxPdp induced apoptosis and autophagy via the PI3K/AKT/mTOR pathway. Furthermore, PtoxPdp could also inhibit epithelial-mesenchymal transition, which was achieved by downregulating both PI3K/AKT/mTOR and NF-κB/Snail pathways. Taken together, our results reveal that PtoxPdp is a promising antitumor drug candidate.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Podofilotoxina/análogos & derivados , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Células Hep G2 , Humanos , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Neoplasias Experimentais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição da Família Snail/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Oxid Med Cell Longev ; 2019: 2531493, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191795

RESUMO

Epithelial-mesenchymal transition (EMT) involves metastasis and drug resistance; thus, a new EMT reversing agent is required. It has shown that wild-type p53 can reverse EMT back to epithelial characteristics, and iron chelator acting as a p53 inducer has been demonstrated. Moreover, recent study revealed that etoposide could also inhibit EMT. Therefore, combination of etoposide with iron chelator might achieve better inhibition of EMT. To this end, we prepared di-2-pyridineketone hydrazone dithiocarbamate S-propionate podophyllotoxin ester (PtoxDpt) that combined the podophyllotoxin (Ptox) structural unit (etoposide) with the dithiocarbamate unit (iron chelator) through the hybridization strategy. The resulting PtoxDpt inherited characteristics from parent structural units, acting as both the p53 inducer and topoisomerase II inhibitor. In addition, the PtoxDpt exhibited significant inhibition in migration and invasion, which correlated with downregulation of matrix metalloproteinase (MMP). More importantly, PtoxDpt could inhibit EMT in the absence or presence of TGF-ß1, concomitant to the ROS production, and the additional evidence revealed that PtoxDpt downregulated AKT/mTOR through upregulation of p53, indicating that PtoxDpt induced EMT inhibition through the p53/PI3K/AKT/mTOR pathway.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Podofilotoxina/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células Hep G2 , Humanos , Serina-Treonina Quinases TOR/metabolismo
11.
Oxid Med Cell Longev ; 2018: 4928703, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154950

RESUMO

Some iron chelators display significant anticancer activity that may involve ferritin degradation either in proteasomes or in lysosomes, and the latter might involve ferritinophagy with a period. However, the correlation of ferritinophagy with anticancer activity of iron chelator was not fully determined. Revealing the underlying link therefore is required. Di-2-pyridylketone dithiocarbamate (DpdtC), a novel iron chelator, could mobilize iron from ferritin and displayed excellent antitumor against hepatoma carcinoma cell lines (IC50s = 0.4 ± 0.2 for HepG2 and 3.5 ± 0.3 µM for Bel-7402, resp.); we speculated that the antiproliferative action of DpdtC might involve ferritinophagy. To this end, the alterations of ferritin, microtubule-associated protein light chain 3 (LC3-II), and nuclear receptor coactivator 4 (NCOA4) were investigated after exposure of DpdtC to the cells. The results revealed that DpdtC could cause increases of autophagic vacuoles and LC3-II. The data from cellular immunofluorescence and Western blotting showed a reciprocal relation between abundances of ferritin and LC3-II, but the trends of NCOA4 and LC3-II in abundance were in a similar manner, indicating that a ferritinophagy occurred. Further studies revealed that the ferritinophagy evoked an iron-driven intralysosomal oxidative reaction, resulting in LMP change and lipid peroxidation. Thus, a ferritinophagy-mediated lysosomal ROS generation playing a role in the antiproliferative action of DpdtC could be proposed, which will enrich our knowledge of iron chelator in cancer therapy.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Quelantes de Ferro/uso terapêutico , Ferro/química , Lisossomos/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Quelantes de Ferro/farmacologia , Espécies Reativas de Oxigênio
12.
Oxid Med Cell Longev ; 2018: 4950705, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765497

RESUMO

Diversified biological activities of dithiocarbamates have attracted widespread attention; improving their feature or exploring their potent action of mechanism is a hot topic in medicinal research. Herein, we presented a study on synthesis and investigation of a novel dithiocarbamate, DpdtbA (di-2-pyridylhydrazone dithiocarbamate butyric acid ester), on antitumor activity. The growth inhibition assay revealed that DpdtbA had important antitumor activity for gastric cancer (GC) cell lines (IC50 = 4.2 ± 0.52 µM for SGC-7901, 3.80 ± 0.40 µM for MGC-803). The next study indicated that growth inhibition is involved in ROS generation in mechanism; accordingly, the changes in mitochondrial membrane permeability, apoptotic genes, cytochrome c, bax, and bcl-2 were observed, implying that the growth inhibition of DpdtbA is involved in ROS-mediated apoptosis. On the other hand, the upregulated p53 upon DpdtbA treatment implied that p53 could also mediate the apoptosis. Yet the excess generation of ROS induced by DpdtbA led to cathepsin D translocation and increase of autophagic vacuoles and LC3-II, demonstrating that autophagy was also a contributor to growth inhibition. Further investigation showed that DpdtbA could induce cell cycle arrest at the G1 phase. This clearly indicated the growth inhibition of DpdtbA was via triggering ROS formation and evoking p53 response, consequently leading to alteration in gene expressions that are related to cell survival.


Assuntos
Butiratos/metabolismo , Hidrazonas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Tiocarbamatos/uso terapêutico , Apoptose , Autofagia , Proliferação de Células , Humanos , Hidrazonas/farmacologia , Transdução de Sinais , Tiocarbamatos/farmacologia
13.
Sci Rep ; 8(1): 3398, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467385

RESUMO

Dithiocarbamate has been tested for its effective anti-tumor activity, but the underlying mechanism remains unclear. We previously prepared a novel diththiocarbamate derivative, DpdtC with an ability of catalase inhibition. Here, we for the first time investigated the growth inhibition effects of DpdtC on HER2-amplified cancer cells and elucidated its mechanism of action. Results showed that DpdtC exerted the potent anti-tumor effects against HER2-overexpressed SK-OV-3 and SK-BR-3 cells, especially on SK-OV-3 cells with a higher NDRG1 level, which was also confirmed in the SK-OV-3 xenograft model. Interestingly, we observed that NDRG1 was up-regulated, while membrane expression of HER2 was regressed in SK-OV-3 cells upon DpdtC treatment. In agreement, silencing endogenous NDRG1 also increased the expression of HER2 in SK-OV-3 cells, while overexpressing NDRG1 decreased HER2 expression in SK-BR-3 cells. Furthermore, our results showed the formation of the EGFR/HER2 heterodimer was attenuated and phosphorylation of ERK1/2 was inhibited in SK-OV-3 cells when treated with DpdtC. Collectively, these observations demonstrated that NDRG1 plays an important role in mediating the inhibition effects of DpdtC in HER2-overexpressed cancer cells via selective targeting of the HER2-ERK1/2 pathway. Hence, our investigation suggests that up-regulation of NDRG1 by DpdtC is a promising therapeutic approach in HER2-overexpressed cancers.


Assuntos
Proteínas de Ciclo Celular/genética , Ditiocarb/análogos & derivados , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptor ErbB-2/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ditiocarb/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Fosforilação/efeitos dos fármacos
14.
Cell Physiol Biochem ; 44(2): 618-633, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29161719

RESUMO

BACKGROUND/AIMS: The generation of reactive oxygen species (ROS) caused by amyloid-ß (Aß) is considered to be one of mechanisms underlying the development of Alzheimer's disease. Curcumin can attenuate Aß-induced neurotoxicity through ROS scavenging, but the protective effect of intracellular curcumin on neurocyte membranes against extracellular Aß may be compromised. To address this issue, we synthesized a palmitic acid curcumin ester (P-curcumin) which can be cultivated on the cell membrane and investigated the neuroprotective effect of P-curcumin and its interaction with Aß. METHODS: P-curcumin was prepared through chemical synthesis. Its structure was determined via nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). An MTT assay was used to assess Aß cytotoxicity and the protective effect of P-curcumin on SH-SY5Y cells. The effect of P-curcumin on Aß-induced ROS production in vitro and in vivo were assessed based on changes in dichlorofluorescein (DCF) fluorescence. A spectrophotometric method was employed to detect lipid peroxidation. To mimic the interaction of P-curcumin on cell membranes with Aß, liposomes were prepared by thin film method. Finally, the interactions between free P-curcumin and P-curcumin cultivated on liposomes and Aß were determined via spectrophotometry. RESULTS: A novel derivative, palmitic acid curcumin ester was prepared and characterized. This curcumin, cultivated on the membranes of neurocytes, may prevent Aß-mediated ROS production and may inhibit the direct interaction between Aß and the cellular membrane. Furthermore, P-curcumin could scavenge Aß-mediated ROS as curcumin in vitro and in vivo, and had the potential to prevent lipid peroxidation. Morphological analyses showed that P-curcumin was better than curcumin at protecting cell shape. To examine P-curcumin's ability to attenuate direct interaction between Aß and cell membranes, the binding affinity of Aß to curcumin and P-curcumin was determined. The association constants for free P-curcumin and curcumin were 7.66 × 104 M-1 and 7.61 × 105 M-1, respectively. In the liposome-trapped state, the association constants were 3.71 × 105 M-1 for P-curcumin and 1.44× 106 M-1 for curcumin. With this data, the thermodynamic constants of P-curcumin association with soluble Aß (ΔH, ΔS, and ΔG) were also determined. CONCLUSION: Cultivated curcumin weakened the direct interaction between Aß and cell membranes and showed greater neuroprotective effects against Aß insult than free curcumin.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/síntese química , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Lipossomos/química , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Ácido Palmítico/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica
15.
Int J Oncol ; 51(6): 1909-1919, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039462

RESUMO

Cancer cells have higher demand of iron and copper ions for growth, disturbing the metal's homeostasis can inhibit proliferation of cancer cell. Dithiocarbamates possessing excellent metal chelating ability and antitumor activity are considered as candidates in chelation therapy, however, their antitumor molecular mechanisms remain to be elucidated. In the present study, a dithiocarbamate derivative, di-2-pyridylhydrazone dithiocarbamate s-acetic acid (DpdtaA) was prepared to address the issue whether the molecular mechanism behind biological behavior showed by dithiocarbamate was p53 mediated. The proliferation inhibition assay showed that DpdtaA exhibited excellent antiproliferative effect for hepatocellular carcinoma (IC50= 3.0±0.4 µM for HepG2, 6.1±0.6 µM for Bel-7402 cell). However, in the presence of copper ion, the antiproliferative activity of DpdtaA significantly attenuated (~3-fold for HepG2) due to formation of copper chelate. The ROS assay revealed that the antiproliferative activity of DpdtaA correlated with ROS generation. Western blotting demonstrated that DpdtaA could upregulate p53 via down-regulating the Mdm2, accordingly leading to changes of bcl family proteins, indicating that a p53-dependent intrinsic apoptosis was partly involved. Simulation from molecular docking hinted that DpdtaA could disrupt interaction between p53 and Mdm2, indicating the disruption might also contribute to the upregulation of p53. The alternations in lysosome membrane permeability and acidic vacuoles as well as LC3-II upregulation indicated that autophagy was involved. The copper addition led to significantly attenuate biological activity of DpdtaA, with few dithiocarbamates, but the mechanism in apoptosis induction was not altered except for weaker ability.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Hidrazonas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Tiocarbamatos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Quelantes/farmacologia , Cobre/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Espécies Reativas de Oxigênio/metabolismo
16.
Mol Biosyst ; 13(9): 1817-1826, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28714505

RESUMO

The bioactivity of drugs is attributed to their interaction with biological molecules, embodied in either their direct or indirect influence on enzyme activity and conformation. Di-2-pyridylketone hydrazine dithiocarbamate (DpdtC) exhibits significant antitumor activity in our preliminary study. We speculated that its activity may partly stem from enzyme inhibition due to strong metal chelating ability. To this end, we assessed its effect on catalase from erythrocytes and found evidence of inhibition, which was further confirmed by ROS determination in vivo. Thus, detailing the interaction between the agent and catalase via spectroscopic methods and molecular docking was required to obtain information on both the dynamics and thermodynamic parameters. The Lineweaver-Burk plot implied an uncompetitive pattern between DpdtC and catalase from beef liver, and IC50 = ∼7 µM. The thermodynamic parameters from fluorescence quenching measurements indicated that DpdtC could bind to catalase with moderate affinity (Ka = approximately 104 M-1). CD spectra revealed that DpdtC could significantly disrupt the secondary structure of catalase. Docking studies indicated that DpdtC bound to a flexible region of catalase, involving hydrogen bonds and salt bond; this was consistent with thermodynamic results from spectral investigations. Our data clearly showed that catalase inhibition of DpdtC was not due to direct chelation of iron from heme (killing), but through an allosteric effect. Thus, it can be concluded that the antiproliferative activity of DpdtC is partially attributed to its catalase inhibition.


Assuntos
Catalase/antagonistas & inibidores , Catalase/química , Pirazóis/química , Tiocarbamatos/química , Tiocarbamatos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , Ativação Enzimática/efeitos dos fármacos , Humanos , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
17.
J Phys Chem A ; 121(20): 3898-3908, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28471677

RESUMO

Infrared spectra of matrix isolated dibridged Si(µ-H)2MH2 and tribridged Si(µ-H)3MH molecules (M = Zr and Hf) were observed following the laser-ablated metal atom reactions with SiH4 during condensation in excess argon and neon, but only the latter species was observed with titanium. Assignments of the major vibrational modes, which included terminal MH, MH2 and hydrogen bridge Si-H-M stretching modes, were confirmed by the appropriate SiD4 isotopic shifts and density functional vibrational frequency calculations (B3LYP and BPW91). The Si-H-M hydrogen bridge bond is calculated as weak covalent interaction and compared with the C-H···M agostic interaction in terms of electron localization function (ELF) analysis and noncovalent interaction index (NCI) calculations. Furthermore, the different products of Ti, Zr, and Hf reactions with SiH4 are discussed in detail.

18.
Molecules ; 21(8)2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-27556432

RESUMO

The use of chelators for cancer treatment has been an alternative option. Dithiocarbamates have recently attracted considerable attention owning to their diverse biological activities; thus, the preparation of new dithiocarbamate derivatives with improved antitumor activity and selectivity as well as probing the underlying molecular mechanism are required. In this study, di-2-pyridylhydrazone dithiocarbamate S-propionic acid (DpdtpA) and its copper complex were prepared and characterized, and its antiproliferative activity was evaluated. The proliferation inhibition assay showed that DpdtpA exhibited excellent antiproliferative effect in hepatocellular carcinoma (IC50 = 1.3 ± 0.3 µM for HepG2, and 2.5 ± 0.6 µM for Bel-7402). However, in the presence of copper ion, the antiproliferative activity of DpdtpA was dramatically attenuated (20-30 fold) owing to the formation of copper chelate. A preliminarily mechanistic study revealed that reactive oxygen species (ROS) generation mediated the antiproliferative activity of DpdtpA, and accordingly induced apoptosis, DNA cleavage, and autophagy. Surprisingly, the cytotoxicity of DpdtpA copper complex (DpdtpA-Cu) was also involved in ROS generation; however, a paradoxical relation between cellular ROS level and cytotoxicity was observed. Further investigation indicated that DpdtpA could induce cell cycle arrest at the S phase; however, DpdtpA-Cu lacked this effect, which explained the difference in their antiproliferative activity.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Cobre/química , Tiocarbamatos/síntese química , Tiocarbamatos/farmacologia , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Células Hep G2 , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Hidrazonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tiocarbamatos/química
19.
Molecules ; 21(5)2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27136517

RESUMO

The drug, di-2-pyridylketone-2-pyridine carboxylic acid hydrazone (DPPCAH) and its copper complex (DPPCAH-Cu) exhibit significant antitumor activity. However, the mechanism of their pharmacological interaction with the biological molecule bovine serum albumin (BSA) remains poorly understood. The present study elucidates the interactions between the drug and BSA through MTT assays, spectroscopic methods and molecular docking analysis. Our results indicate that BSA could attenuate effect on the cytotoxicity of DPPCAH, but not DPPCAH-Cu. Data from fluorescence quenching measurements demonstrated that both DPPCAH and DPPCAH-Cu could bind to BSA, with a reversed effect on the environment of tryptophan residues in polarity. CD spectra revealed that the DPPCAH-Cu exerted a slightly stronger effect on the secondary structure of BSA than DPPCAH. The association constant of DPPCAH with BSA was greater than that of DPPCAH-Cu. Docking studies indicated that the binding of DPPCAH to BSA involved a greater number of hydrogen bonds compared to DPPCAH-Cu. The calculated distances between bound ligands and tryptophans in BSA were in agreement with fluorescence resonance energy transfer results. Thus, the binding affinity of the drug (DPPCAH or DPPCAH-Cu) with BSA partially contributes to its antitumor activity; the greater the drug affinity is to BSA, the less is its antitumor activity.


Assuntos
Cobre/química , Hidrazonas/farmacologia , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Animais , Antineoplásicos , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Células Hep G2 , Humanos , Hidrazonas/química , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Espectrometria de Fluorescência
20.
Int J Oncol ; 47(5): 1854-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26398524

RESUMO

Iron depletion and stimulation of iron-dependent free radical damage is a rapidly developing field for chelation therapy, but the iron mobilization from ferritin by chelators has received less attention. In this study, the di-2-pyridylketone 2-pyridine carboxylic acid hydrazone (DPPCAH) and its copper complex was prepared and characterized by NMR and MS spectra. The proliferation inhibition assay showed that both DPPCAH and its copper complex exhibited selectively proliferation inhibition for HepG2 (IC50, 4.6 ± 0.2 µM for DPPACH and 1.3 ± 0.2 µM for its copper complex), but less inhibition for HCT-116 cell line (IC50, >100 µM for DPPACH and 7.8 ± 0.4 µM for its copper complex). The mechanistic studies revealed that DPPACH could remove iron from ferritin in a oxygen-catalytic manner, and contributed to redox activity of labile iron pool (LIP), that is less reported for the chelators that possess significant biological activity. The reactive oxygen species (ROS) generation and DNA cleavage assay in vitro and in vivo showed that both DPPACH-Fe(II) and DPPACH-Cu were redox-active species, indicating that ROS may mediate their antitumor activity. Further study revealed that both DPPACH and its copper complex displayed certain degree of inhibition of type II topoisomerase (Top) which contributed to their antitumor activity. Thus, the mechanism that iron mobilization by DPPACH from ferritin contributed to LIP was proposed, and both DPPACH and its copper complex were involved in ROS generation and Top II inhibition for their antitumor activities.


Assuntos
Proliferação de Células/efeitos dos fármacos , Hidrazonas/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Catálise , Cobre/química , DNA Topoisomerases/efeitos dos fármacos , Células Hep G2 , Humanos , Hidrazonas/química , Ferro/química , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Oxigênio/química , Inibidores da Topoisomerase/administração & dosagem , Inibidores da Topoisomerase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA