Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Cancer Cell Int ; 24(1): 235, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970064

RESUMO

BACKGROUND: Colorectal cancer is among the most common malignant tumors affecting the gastrointestinal tract. Liver metastases, a complication present in approximately 50% of colorectal cancer patients, are a considerable concern. Recently, studies have revealed the crucial role of miR-455 in tumor pathogenesis. However, the effect of miR-455 on the progression of liver metastases in colorectal cancer remains controversial. As an antagonist of bone morphogenetic protein(BMP), Gremlin 1 (GREM1) may impact organogenesis, body patterning, and tissue differentiation. Nevertheless, the role of miR-455 in regulating GREM1 in colorectal cancer liver metastases and how miR-455/GREM1 axis influences tumour immune microenvironment is unclear. METHODS: Bioinformatics analysis shows that miR-455/GREM1 axis plays crucial role in liver metastasis of intestinal cancer and predicts its possible mechanism. To investigate the impact of miR-455/GREM1 axis on the proliferation, invasion, and migration of colorectal cancer cells, colony formation assay, wound healing and transwell assay were examined in vitro. The Dual-Luciferase reporter gene assay and RNA pull-down assay confirmed a possible regulatory effect between miR-455 and GREM1. In vivo, colorectal cancer liver metastasis(CRLM) model mice was established to inquiry the effect of miR-455/GREM1 axis on tumor growth and macrophage polarization. The marker of macrophage polarization was tested using immunofluorescence(IF) and quantitative real-time polymerase chain reaction(qRT-PCR). By enzyme-linked immunosorbent assay (ELISA), cytokines were detected in culture medium supernatants. RESULTS: We found that miR-455 and BMP6 expression was increased and GREM1 expression was decreased in liver metastase compared with primary tumor. miR-455/GREM1 axis promotes colorectal cancer cells proliferation, migration, invasion via affected PI3K/AKT pathway. Moreover, downregulating GREM1 augmented BMP6 expression in MC38 cell lines, inducing M2 polarization of macrophages, and promoting liver metastasis growth in CRLM model mice. CONCLUSION: These data suggest that miR-455/GREM1 axis promotes colorectal cancer progression and liver metastasis by affecting PI3K/AKT pathway and inducing M2 macrophage polarization. These results offer valuable insights and direction for future research and treatment of CRLM.

2.
Cell Death Dis ; 15(6): 411, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866777

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive cancer characterized by a poor prognosis and resistance to chemotherapy. In this study, utilizing scRNA-seq, we discovered that the tetra-transmembrane protein mal, T cell differentiation protein 2 (MAL2), exhibited specific enrichment in ICC cancer cells and was strongly associated with a poor prognosis. The inhibition of MAL2 effectively suppressed cell proliferation, invasion, and migration. Transcriptomics and metabolomics analyses suggested that MAL2 promoted lipid accumulation in ICC by stabilizing EGFR membrane localization and activated the PI3K/AKT/SREBP-1 axis. Molecular docking and Co-IP proved that MAL2 interacted directly with EGFR. Based on constructed ICC organoids, the downregulation of MAL2 enhanced apoptosis and sensitized ICC cells to cisplatin. Lastly, we conducted a virtual screen to identify sarizotan, a small molecule inhibitor of MAL2, and successfully validated its ability to inhibit MAL2 function. Our findings highlight the tumorigenic role of MAL2 and its involvement in cisplatin sensitivity, suggesting the potential for novel combination therapeutic strategies in ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Receptores ErbB , Metabolismo dos Lipídeos , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Colangiocarcinoma/tratamento farmacológico , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Animais , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Transdução de Sinais , Proliferação de Células , Análise de Célula Única , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Camundongos , Regulação Neoplásica da Expressão Gênica , Análise de Sequência de RNA , Apoptose/efeitos dos fármacos , Masculino
3.
Acta Biomater ; 182: 275-287, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761960

RESUMO

Bacterial infections pose a global concern due to high fatality rates, particularly with the rise of drug-resistant bacteria and biofilm formation. There is an urgent need for innovative strategies to combat this issue. A study on chemodynamic therapy (CDT) using nanozymes in conjunction with photothermal therapy (PTT) has displayed potential in addressing drug-resistant bacterial infections. However, the effectiveness of this combined approach is limited by inadequate light absorption. This work suggests the NiOx nanoparticles enriched with oxygen vacancies enhance CDT and PTT to overcome this challenge. The presence of oxygen vacancies in NiOx can reduce the energy gap between its valence band and conduction band, facilitating oxygen adsorption. NiOx has exhibited notable antibacterial properties and complete eradication of biofilms in both laboratory and animal trials. In animal abscess models, NiOx demonstrated antibacterial and anti-inflammatory effects in the initial stages, while also promoting wound healing and tissue regeneration by influencing immune factors and encouraging collagen deposition and neovascularization. With positive biosafety and biocompatibility profiles, the oxygen vacancy-enhanced CDT and PTT therapy proposed in this article hold promise for effective sterilization, deep biofilm removal, and treatment of infections caused by drug-resistant bacteria. STATEMENT OF SIGNIFICANCE: This study constructs oxygen vacancies NiOx nanoparticles (NiOx NPs) to improve the efficacy of photothermal therapy and chemodynamic therapy. The presence of oxygen vacancies in NiOx NPs helps bridge the energy gap between its valence band and conduction band, facilitating oxygen adsorption and improving catalytic efficiency. In both in vivo and in vitro antibacterial experiments, NiOx NPs demonstrate effective antibacterial and anti-inflammatory properties. Furthermore, it aids in wound healing and tissue regeneration by modulating immune factors, collagen deposition, and angiogenesis. This approach presents a promising collaborative strategy for utilizing nickel-based defective nanomaterials in combating deep drug-resistant bacterial infections.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Níquel , Oxigênio , Níquel/química , Níquel/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Oxigênio/química , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/terapia , Terapia Fototérmica , Biofilmes/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/uso terapêutico , Fototerapia
4.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2023-2036, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812219

RESUMO

To evaluate the efficacy and safety of different Chinese patent medicines in the treatment of pelvic inflammatory disease(PID) using network Meta-analysis. The databases of CNKI, Wanfang, VIP, SinoMed, PubMed, Cochrane Library, EMbase, and Web of Science were searched, and from the time of database construction to July 16, 2023, the randomized controlled trial(RCT) of Chinese patent medicines combined with antibiotics in the treatment of PID included in these databases was collected. The quality of the included literature was evaluated using the Cochrane risk of bias tool, and data was analyzed using RevMan 5.4 and Stata 16 software. Forty-six RCTs were finally included, including Kangfu Xiaoyan Suppositories, Fuke Qianjin Tablets/Capsules, Kangfuyan Capsules, Fuyanxiao Capsules, Huahong Tablets/Capsules, Fuyanshu Capsules, Fuyue Tablets, Jingangteng Capsules, and Fuyan Kangfu Capsules. Network Meta-analysis showed that,(1) in terms of clinical effective rate, the optimal intervention was Kangfu Xiaoyan Suppositories combined with antibiotics.(2) In terms of lowering hypersensitive C-reactive protein(hs-CRP), the optimal intervention was Huahong Tablets/Capsules combined with antibiotics.(3) In terms of lowering tumor necrosis factor-α(TNF-α), the optimal intervention was Fuyue Tablets combined with antibiotics.(4) In terms of lowering recurrence rate, the optimal intervention was Fuyanshu Capsules combined with antibiotics.(5) In terms of safety, the intervention with the least adverse reactions was Kangfuyan Capsules combined with antibiotics. The results show that Chinese patent medicines combined with antibiotics in the treatment of PID can improve the comprehensive efficacy, reduce the patient's hs-CRP and TNF-α, and have a low recurrence rate, as well as safe and reliable efficacy. In clinical treatment, Kangfu Xiaoyan Suppositories or Kangfuyan Capsules combined with antibiotics can be preferred. Due to the limitations of the sample size and the quality of the literature, more large-sample and high-quality studies are needed to validate the conclusions.


Assuntos
Antibacterianos , Medicamentos de Ervas Chinesas , Doença Inflamatória Pélvica , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/uso terapêutico , Doença Inflamatória Pélvica/tratamento farmacológico , Humanos , Feminino , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto , Quimioterapia Combinada , Medicamentos sem Prescrição
5.
Chin J Cancer Res ; 36(2): 167-194, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38751435

RESUMO

Hepatocellular carcinoma (HCC) is responsible for a significant number of cancer-related deaths worldwide and its incidence is increasing. Locoregional treatments, which are precision procedures guided by imaging to specifically target liver tumors, play a critical role in the management of a substantial portion of HCC cases. These therapies have become an essential element of the HCC treatment landscape, with transarterial chemoembolization (TACE) being the treatment of choice for patients with intermediate to advanced stages of the disease. Other locoregional therapies, like radiofrequency ablation, are highly effective for small, early-stage HCC. Nevertheless, the advent of targeted immunotherapy has challenged these established treatments. Tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) have shown remarkable efficacy in clinical settings. However, their specific uses and the development of resistance in subsequent treatments have led clinicians to reevaluate the future direction of HCC therapy. This review concentrates on the distinct features of both systemic and novel locoregional therapies. We investigate their effects on the tumor microenvironment at the molecular level and discuss how targeted immunotherapy can be effectively integrated with locoregional therapies. We also examine research findings from retrospective studies and randomized controlled trials on various combined treatment regimens, assessing their validity to determine the future evolution of locoregional therapies within the framework of personalized, comprehensive treatment.

6.
Cancer Cell Int ; 24(1): 192, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822322

RESUMO

BACKGROUND: Immunotherapy combined with molecular targeted therapy is increasingly popular in patients with advanced hepatocellular carcinoma (HCC). However, immune-related adverse events(irAEs) brought on by immunotherapy increase the likelihood of side effects, thus it is important to look into ways to address this issue. METHODS: Different metabolite patterns were established by analyzing metabolomics data in liver tissue samples from 10 patients(divided into severe and mild liver injury) before and after immuno-targeted therapy. After establishing a subcutaneous tumor model of HCC, the mice were divided into PBS group, ascorbic acid(AA) group, and anti-PD1 + tyrosine kinase inhibitor (TKI) group, anti-PD1 + TKI + AA group. Liver tissue were stained with hematoxylin-eosin staining(HE) and the content of aspartate transaminase (AST) and alanine transaminase(ALT) in blood were determined. The mechanism was confirmed by western blotting, mass cytometry, and other techniques. RESULTS: Through metabolomics analysis, AA was significantly reduced in the sample of patients with severe liver injury caused by immuno-targeted therapy compared to patients with mild liver injury. The addition of AA in vivo experiments demonstrated a reduction in liver injury in mice. In the liver tissues of the anti-PD1 + TKI + AA group, the protein expressions of SLC7A11,GPX4 and the level of glutathione(GSH) were found to be higher compared to the anti-PD1 + TKI group. Mass cytometry analysis revealed a significant increase in the CD11b+CD44+ PD-L1+ cell population in the AA group when compared to the PBS group. CONCLUSIONS: AA could reduce liver injury by preventing hepatocyte SLC7A11/GPX4 ferroptosis and improve the immunotherapy effect of anti-PD1 by boosting CD11b+CD44+PD-L1+cell population in HCC.

8.
Chem Biol Interact ; 393: 110939, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38490643

RESUMO

Cisplatin (CDDP) is broadly employed to treat different cancers, whereas there are no drugs approved by the Food and Drug Administration (FDA) for preventing its side effects, including ototoxicity. Quercetin (QU) is a widely available natural flavonoid compound with anti-tumor and antioxidant properties. The research was designed to explore the protective effects of QU on CDDP-induced ototoxicity and its underlying mechanisms in male C57BL/6 J mice and primary cultured pericytes (PCs). Hearing changes, morphological changes of stria vascularis, blood labyrinth barrier (BLB) permeability and expression of apoptotic proteins were observed in vivo by using the auditory brainstem response (ABR) test, HE staining, Evans blue staining, immunohistochemistry, western blotting, etc. Oxidative stress levels, mitochondrial function and endothelial barrier changes were observed in vitro by using DCFH-DA probe detection, flow cytometry, JC-1 probe, immunofluorescence and the establishment in vitro BLB models, etc. QU pretreatment activates the PI3K/AKT signaling pathway, inhibits CDDP-induced oxidative stress, protects mitochondrial function, and reduces mitochondrial apoptosis in PCs. However, PI3K/AKT specific inhibitor (LY294002) partially reverses the protective effects of QU. In addition, in vitro BLB models were established by coculturing PCs and endothelial cells (ECs), which suggests that QU both reduces the CDDP-induced apoptosis in PCs and improves the endothelial barrier permeability. On the whole, the research findings suggest that QU can be used as a novel treatment to reduce CDDP-induced ototoxicity.


Assuntos
Cisplatino , Ototoxicidade , Camundongos , Animais , Masculino , Cisplatino/farmacologia , Cisplatino/metabolismo , Pericitos/metabolismo , Quercetina/farmacologia , Quercetina/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/metabolismo , Ototoxicidade/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Apoptose
9.
Andrology ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506240

RESUMO

BACKGROUND: Like the coronavirus disease 2019, the hepatitis B virus is also wreaking havoc worldwide, which has infected over 2 billion people globally. Using an experimental animal model, our previous research observed that the hepatitis B virus genes integrated into human spermatozoa can replicate and express after being transmitted to embryos. However, as of now, this phenomenon has not been confirmed in clinical data from patients. OBJECTIVES: To explore the integration of the hepatitis B virus into patients' sperm genome and its potential clinical risks. MATERIALS AND METHODS: Forty-eight patients with chronic hepatitis B virus infection were categorized into two groups: Test Group-1 comprised 23 patients without integration of hepatitis B virus DNA within the sperm genome. Test Group-2 comprised 25 patients with integration of hepatitis B virus DNA within the sperm genome. Forty-eight healthy male donors were included as control. The standard semen parameter analysis, real-time polymerase chain reaction, quantitative real-time polymerase chain reaction, sperm chromatin structure assay, fluorescence in situ hybridization, and immunofluorescence assays were utilized. RESULTS: The difference in the median copy number of hepatitis B virus DNA per mL of sera between Test Group-1 and Group-2 was not statistically significant. In Test Group-2, the integration rate of hepatitis B virus DNA was 0.109%, which showed a significant correlation with the median copy number of hepatitis B virus DNA in motile spermatozoa (1.18 × 103 /mL). Abnormal semen parameters were found in almost all these 25 patients. The integrated hepatitis B virus S, C, X, and P genes were detected to be introduced into sperm-derived embryos through fertilization and retained their function in replication, transcription, and translation. CONCLUSION: Our findings suggest that hepatitis B virus infection can lead to sperm quality deterioration and reduced fertilization capacity. Furthermore, viral integration causes instability in the sperm genome, increasing the potential risk of termination, miscarriage, and stillbirth. This study identified an unconventional mode of hepatitis B virus transmission through genes rather than virions. The presence of viral sequences in the embryonic genome poses a risk of liver inflammation and cancer.

10.
Quant Imaging Med Surg ; 14(1): 824-836, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223081

RESUMO

Background: Recent structural and functional imaging studies of depression in Parkinson disease (DPD) have failed to reveal the relevant mechanism, and relatively few studies have been conducted on limbic systems such as the hippocampus. This study thus aimed to gain new insights into the pathogenesis of DPD by detecting the changes in the hippocampal structure and the resting-state functional connectivity (FC) of patients with DPD. Methods: This study included 30 patients with DPD (DPD group), 30 patients with nondepressed Parkinson disease (NDPD; NDPD group), and 30 normal controls (NCs; NC group) with no significant age or gender differences with the DPD group. The Hamilton Depression Rating Scale (HAMD) and three-dimensional T1-weighted imaging and blood oxygen level-dependent imaging data of all patients were collected. The hippocampal volumes were measured using MATLAB software (MathWorks). The correlation between hippocampal volume and the HAMD score in the DPD group was analyzed with Pearson correlation coefficient. The bilateral hippocampi were used as the regions of interest and as the seed points for FC. FC analysis was performed between the preprocessed functional data of the whole brain and the two seed points with Data Processing Assistant for Resting-State and Statistical Parametric Mapping 8 software, respectively. The correlation between FC and HAMD scores in the patients with DPD was determined using partial correlation analysis. Results: Compared with those in the NC group and the NDPD group, the bilateral hippocampal volumes in the DPD group were significantly decreased (P<0.05). There was a negative correlation between the bilateral hippocampal volume and the HAMD score in the DPD group (P<0.05). Compared with that of the NDPD group, the FC of the right hippocampus with the right occipital lobe and left precuneus was reduced in the DPD group. In the DPD group, the FC values of the right hippocampus, right occipital lobe, and left anterior cuneiform lobe were negatively correlated with HAMD scores. Conclusions: The volume of bilateral hippocampi in patients with DPD is significantly decreased and negatively correlated with the severity of depressive disorder. The weakened FC of the right hippocampus to the right occipital lobe and the left precuneus may play an important role in the neurological basis of DPD.

11.
J Cachexia Sarcopenia Muscle ; 15(1): 173-188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009816

RESUMO

BACKGROUND: Handelin is a bioactive compound from Chrysanthemum indicum L. that improves motor function and muscle integrity during aging in Caenorhabditis elegans. This study aimed to further evaluate the protective effects and molecular mechanisms of handelin in a mouse muscle atrophy model induced by cachexia and aging. METHODS: A tumour necrosis factor (TNF)-α-induced atrophy model was used to examine handelin activity in cultured C2C12 myotubes in vitro. Lipopolysaccharide (LPS)-treated 8-week-old model mice and 23-month-old (aged) mice were used to examine the therapeutic effects of handelin on cachexia- and aging-induced muscle atrophy, respectively, in vivo. Protein and mRNA expressions were analysed by Western blotting, ELISA and quantitative PCR, respectively. Skeletal muscle mass was measured by histological analysis. RESULTS: Handelin treatment resulted in an upregulation of protein levels of early (MyoD and myogenin) and late (myosin heavy chain, MyHC) differentiation markers in C2C12 myotubes (P < 0.05), and enhanced mitochondrial respiratory (P < 0.05). In TNF-α-induced myotube atrophy model, handelin maintained MyHC protein levels, increased insulin-like growth factor (Igf1) mRNA expression and phosphorylated protein kinase B protein levels (P < 0.05). Handelin also reduced atrogin-1 expression, inhibited nuclear factor-κB activation and reduced mRNA levels of interleukin (Il)6, Il1b and chemokine ligand 1 (Cxcl1) (P < 0.05). In LPS-treated mice, handelin increased body weight (P < 0.05), the weight (P < 0.01) and cross-sectional area (CSA) of the soleus muscle (P < 0.0001) and improved motor function (P < 0.05). In aged mice, handelin slightly increased the weight of the tibialis anterior muscle (P = 0.06) and CSA of the tibialis anterior and gastrocnemius muscles (P < 0.0001). In the tibialis anterior muscle of aged mice, handelin upregulated mRNA levels of Igf1 (P < 0.01), anti-inflammatory cytokine Il10 (P < 0.01), mitochondrial biogenesis genes (P < 0.05) and antioxidant-related enzymes (P < 0.05) and strengthened Sod and Cat enzyme activity (P < 0.05). Handelin also reduced lipid peroxidation and protein carbonylation, downregulated mRNA levels of Fbxo32, Mstn, Cxcl1, Il1b and Tnf (P < 0.05), and decreased IL-1ß levels in serum (P < 0.05). Knockdown of Hsp70 or using an Hsp70 inhibitor abolished the ameliorating effects of handelin on myotube atrophy. CONCLUSIONS: Handelin ameliorated cachexia- and aging-induced skeletal muscle atrophy in vitro and in vivo, by maintaining homeostasis of protein synthesis and degradation, possibly by inhibiting inflammation. Handelin is a potentially promising drug candidate for the treatment of muscle wasting.


Assuntos
Caquexia , Proteostase , Terpenos , Animais , Camundongos , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Músculo Esquelético/patologia , Fator de Necrose Tumoral alfa , Modelos Animais de Doenças , Inflamação/metabolismo , RNA Mensageiro/metabolismo
14.
Eur J Med Res ; 28(1): 589, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38093387

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most prevalent forms of cancer and poses a threat to the health and survival of humans. Mitochondrial ribosomal protein L48 (MRPL48) belongs to the mitochondrial ribosomal protein family, which participates in energy production. Studies have shown that MRPL48 can predict osteosarcoma incidence and prognosis, as well as promotes colorectal cancer progression. However, the role of MRPL48 in HCC remains unknown. METHODS: TCGA, GEO, HCCDB, CPTAC, SMART, UALCAN, Kaplan-Meier plotter, cBioPortal, and MethSurv were performed for bioinformatics purposes. Quantitative RT-PCR, immunoblotting, and functional studies were conducted to validate the methodology in vitro. RESULTS: MRPL48 was greatly overexpressed in HCC tissues, compared with healthy tissue, which was subsequently demonstrated in vitro as well. The survival and regression analyses showed that MRPL48 expression is of significant clinical prognostic value in HCC. The ROC curve and nomogram analysis indicated that MRPL48 is a powerful predictor of HCC. MRPL48 methylation was adversely associated with the expression of MRPL48, and patients with a low level of methylation had poorer overall survival than those with a high level of methylation. GSEA showed that the expression of the MRPL48 was correlated with Resolution of Sister Chromatid Cohesion, Mitotic Prometaphase, Retinoblastoma Gene in Cancer, RHO Gtpases Activate Formins, Mitotic Metaphase and Anaphase, and Cell Cycle Checkpoints. An analysis of immune cell infiltration showed a significant association between MRPL48 and immune cell infiltration subsets, which impacted the survival of HCC patients. Additionally, MRPL48 knockdown reduced HCC cell proliferation, migration, and invasion in vitro. CONCLUSIONS: We demonstrated that MRPL48 expression may be associated with HCC development and prognosis. These findings may open up new research directions and opportunities for the development of HCC treatments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Prognóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Biomarcadores , Proteínas Ribossômicas
15.
World J Gastrointest Surg ; 15(11): 2639-2645, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38111759

RESUMO

BACKGROUND: Isolated gallbladder injury (GI) (IGI) directly induced by abdominal trauma is rare. Symptoms, indications, and imaging examinations of IGI are frequently non-specific, posing tremendous diagnostic challenges, which are simple to overlook and may have severe implications. Improving doctors' understanding of gallbladder injury (GI) facilitates early detection and decreases the likelihood of severe consequences, including death. CASE SUMMARY: We report a case of IGI caused by blunt violence (after falling from three meters with the umbilicus as the stress point) and performed laparoscopic repair of the gallbladder rupture, which helps clinicians understand IGI and reduce the severe consequences of delayed diagnosis. Through extensive medical history and dynamic abdominal ultrasound evaluation, doctors can identify GI early and begin surgery, thereby decreasing the devastating repercussions of delayed diagnosis. CONCLUSION: This article aims to improve clinicians' understanding of IGI and propose a method for the diagnosis and treatment of GI.

16.
Front Oncol ; 13: 1241357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916161

RESUMO

Gastrointestinal cancer is a common malignancy with high mortality and poor prognosis. Therefore, developing novel effective markers and therapeutic targets for gastrointestinal cancer is currently a challenging and popular topic in oncology research. Accumulating studies have reported that N6-methyladenosine is the most abundant epigenetic modification in eukaryotes. N6-methyladenosine plays an essential role in regulating RNA expression and metabolism, including splicing, translation, stability, decay, and transport. FTO, the earliest demethylase discovered to maintain the balance of N6-adenosine methylation, is abnormally expressed in many tumors. In this review, we discuss the molecular structure and substrate selectivity of FTO. we focus on the role of FTO in gastrointestinal tumor proliferation, migration, invasion, apoptosis, autophagy, immune microenvironment, and its molecular mechanisms. We also discuss its potential in the treatment of gastrointestinal cancers.

17.
J Immunother Cancer ; 11(11)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38007237

RESUMO

BACKGROUND: Single-cell RNA sequencing, also known as scRNA-seq, is a method profiling cell populations on an individual cell basis. It is particularly useful for more deeply understanding cell behavior in a complicated tumor microenvironment. Although several previous studies have examined scRNA-seq for hepatocellular carcinoma (HCC) tissues, no one has tested and analyzed HCC with different stages. METHODS: In this investigation, immune cells isolated from surrounding normal tissues and cancer tissues from 3 II-stage and 4 III-stage HCC cases were subjected to deep scRNA-seq. The analysis included 15 samples. We distinguished developmentally relevant trajectories, unique immune cell subtypes, and enriched pathways regarding differential genes. Western blot and co-immunoprecipitation were performed to demonstrate the interaction between fatty acid binding protein 1 (FABP1) and peroxisome proliferator-activated receptor gamma(PPARG). In vivo experiments were performed in a C57BL/6 mouse model of HCC established via subcutaneous injection. RESULTS: FABP1 was discovered to be overexpressed in tumor-associated macrophages (TAMs) with III-stage HCC tissues compared with II-stage HCC tissues. This finding was fully supported by immunofluorescence detection in significant amounts of HCC human samples. FABP1 deficiency in TAMs inhibited HCC progression in vitro. Mechanistically, FABP1 interacted with PPARG/CD36 in TAMs to increase fatty acid oxidation in HCC. When compared with C57BL/6 mice of the wild type, tumors in FABP1-/- mice consistently showed attenuation. The FABP1-/- group's relative proportion of regulatory T cells and natural killer cells showed a downward trend, while dendritic cells, M1 macrophages, and B cells showed an upward trend, according to the results of mass cytometry. In further clinical translation, we found that orlistat significantly inhibited FABP1 activity, while the combination of anti-programmed cell death 1(PD-1) could synergistically treat HCC progression. Liposomes loaded with orlistat and connected with IR780 probe could further enhance the therapeutic effect of orlistat and visualize drug metabolism in vivo. CONCLUSIONS: ScRNA-seq atlas revealed an FABP1-dependent immunosuppressive environment in HCC. Orlistat significantly inhibited FABP1 activity, while the combination of anti-PD-1 could synergistically treat HCC progression. This study identified new treatment targets and strategies for HCC progression, contributing to patients with advanced HCC from new perspectives.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Proteínas de Ligação a Ácido Graxo/genética , Imunossupressores/uso terapêutico , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos C57BL , Orlistate/farmacologia , Orlistate/uso terapêutico , PPAR gama/metabolismo , PPAR gama/farmacologia , PPAR gama/uso terapêutico , RNA/farmacologia , RNA/uso terapêutico , Microambiente Tumoral
18.
Front Oncol ; 13: 1223857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655111

RESUMO

Objectives: The advanced gastric adenocarcinoma (GAC) patients (stage III/IV) with surgery may have inconsistent prognoses due to different demographic and clinicopathological factors. In this retrospective study, we developed clinical prediction models for estimating the overall survival (OS) and cancer-specific survival (CSS) in advanced GAC patients with surgery. Methods: A retrospective analysis was conducted using the Surveillance, Epidemiology, and End Results (SEER) database. The total population from 2004 to 2015 was divided into four levels according to age, of which 179 were younger than 45 years old, 695 were 45-59 years old, 1064 were 60-74 years old, and 708 were older than 75 years old. There were 1,712 men and 934 women. Univariate and multivariate Cox regression analyses were performed to identify prognostic factors for OS and CSS. Nomograms were constructed to predict the 1-, 3-, and 5-year OS and CSS. The models' calibration and discrimination efficiency were validated. Discrimination and accuracy were evaluated using the consistency index, area under the receiver operating characteristic curve, and calibration plots; and clinical usefulness was assessed using decision curve analysis. Cross-validation was also conducted to evaluate the accuracy and stability of the models. Prognostic factors identified by Cox regression were analyzed using Kaplan-Meier survival analysis. Results: A total of 2,646 patients were included in our OS study. Age, primary site, differentiation grade, AJCC 6th_TNM stage, chemotherapy, radiotherapy, and number of regional nodes examined were identified as prognostic factors for OS in advanced GAC patients with surgery (P < 0.05). A total of 2,369 patients were included in our CSS study. Age, primary site, differentiation grade, AJCC 6th_TNM stage, chemotherapy, radiotherapy, and number of regional nodes examined were identified as risk factors for CSS in these patients (P < 0.05). These factors were used to construct the nomogram to predict the 1-, 3-, and 5-year OS and CSS of advanced GAC patients with surgery. The consistency index and area under the receiver operating characteristic curve demonstrated that the models effectively differentiated between events and nonevents. The calibration plots for 1-, 3-, and 5-year OS and CSS probability showed good consistence between the predicted and the actual events. The decision curve analysis indicated that the nomogram had higher clinical predictive value and more significant net gain than AJCC 6th_TNM stage in predicting OS and CSS of advanced GAC patients with surgery. Cross-validation also revealed good accuracy and stability of the models. Conclusion: The developed predictive models provided available prognostic estimates for advanced GAC patients with surgery. Our findings suggested that both OS and CSS can benefit from chemotherapy or radiotherapy in these patients.

19.
J Exp Clin Cancer Res ; 42(1): 248, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749638

RESUMO

BACKGROUND: The most common site of metastasis in colorectal cancer (CRC) is the liver and liver metastases occur in more than 50% of patients during diagnosis or treatment. The occurrence of metastasis depends on a series of events known as the invasive-metastasis cascade. Currently, the underlying genes and pathways regulating metastasis initiation in the liver microenvironment are unknown. METHODS: We performed systematic CRISPR/Cas9 screening using an in vivo mouse model of CRC liver metastasis to identify key regulators of CRC metastasis. We present the full results of this screen,which included a list of genes that promote or repress CRC liver colonization. By silencing these genes individually, we found that chondroitin sulfate synthase 1 (CHSY1) may be involved in CRC metastasis. We verified the function of CHSY1 and its involvement in liver metastasis of CRC through in vivo and in vitro experiments. RESULT: The results of TCGA and CRISPR/Cas9 showed that CHSY1 was overexpressed in CRC primary and liver metastasis tissues and indicated a worse clinical prognosis. In vitro and in vivo experiments confirmed that CHSY1 facilitated the liver metastasis of CRC and CHSY1 induced CD8+ T cell exhaustion and upregulated PD-L1 expression. The metabolomic analysis indicated that CHSY1 promoted CD8+ T cell exhaustion by activating the succinate metabolism pathway leading to liver metastasis of CRC. Artemisinin as a CHSY1 inhibitor reduced liver metastasis and enhanced the effect of anti-PD1 in CRC. PLGA-loaded Artemisinin and ICG probe reduced liver metastasis and increased the efficiency of anti-PD1 treatment in CRC. CONCLUSION: CHSY1 could promote CD8+ T cell exhaustion through activation of the succinate metabolic and PI3K/AKT/HIF1A pathway, leading to CRC liver metastasis. The combination of CHSY1 knockdown and anti-PD1 contributes to synergistic resistance to CRC liver metastasis. Artemisinin significantly inhibits CHSY1 activity and in combination with anti-PD1 could synergistically treat CRC liver metastases. This study provides new targets and specific strategies for the treatment of CRC liver metastases, bringing new hope and benefits to patients.


Assuntos
Artemisininas , Neoplasias Colorretais , Neoplasias Hepáticas , N-Acetilgalactosaminiltransferases , Humanos , Animais , Camundongos , Detecção Precoce de Câncer , Sistemas CRISPR-Cas , Fosfatidilinositol 3-Quinases , Exaustão das Células T , Neoplasias Hepáticas/genética , Linfócitos T CD8-Positivos , Neoplasias Colorretais/genética , Microambiente Tumoral , Glucuronosiltransferase , Enzimas Multifuncionais
20.
Adv Sci (Weinh) ; 10(27): e2300470, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37505480

RESUMO

Myocardial infarction (MI) causes excessive damage to the myocardium, including the epicardium. However, whether pluripotent stem cell-derived epicardial cells (EPs) can be a therapeutic approach for infarcted hearts remains unclear. Here, the authors report that intramyocardial injection of human embryonic stem cell-derived EPs (hEPs) at the acute phase of MI ameliorates functional worsening and scar formation in mouse hearts, concomitantly with enhanced cardiomyocyte survival, angiogenesis, and lymphangiogenesis. Mechanistically, hEPs suppress MI-induced infiltration and cytokine-release of inflammatory cells and promote reparative macrophage polarization. These effects are blocked by a type I interferon (IFN-I) receptor agonist RO8191. Moreover, intelectin 1 (ITLN1), abundantly secreted by hEPs, interacts with IFN-ß and mimics the effects of hEP-conditioned medium in suppression of IFN-ß-stimulated responses in macrophages and promotion of reparative macrophage polarization, whereas ITLN1 downregulation in hEPs cancels beneficial effects of hEPs in anti-inflammation, IFN-I response inhibition, and cardiac repair. Further, similar beneficial effects of hEPs are observed in a clinically relevant porcine model of reperfused MI, with no increases in the risk of hepatic, renal, and cardiac toxicity. Collectively, this study reveals hEPs as an inflammatory modulator in promoting infarct healing via a paracrine mechanism and provides a new therapeutic approach for infarcted hearts.


Assuntos
Células-Tronco Embrionárias Humanas , Infarto do Miocárdio , Suínos , Camundongos , Humanos , Animais , Miocárdio , Miócitos Cardíacos , Infarto do Miocárdio/tratamento farmacológico , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA