Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Bioorg Med Chem ; 109: 117792, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38897139

RESUMO

Cancer has been a leading cause of death over the last few decades in western countries as well as in Taiwan. However, traditional therapies are limited by the adverse effects of chemotherapy and radiotherapy, and tumor recurrence may occur. Therefore, it is critical to develop novel therapeutic drugs. In the field of HDAC inhibitor development, apart from the hydroxamic acid moiety, 2-aminobenzamide also functions as a zinc-binding domain, which is shown in well-known HDAC inhibitors such as Entinostat and Chidamide. With recent successful experiences in synthesizing 1-(phenylsulfonyl)indole-based compounds, in this study, we further combined two features of the above chemical compounds and generated indolyl benzamides. Compounds were screened in different cancer cell lines, and enzyme activity was examined to demonstrate their potential for anti-HDAC activity. Various biological functional assays evidenced that two of these compounds could suppress cancer growth and migration capacity, through regulating epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis mechanisms. Data from 3D cancer cells and the in vivo zebrafish model suggested the potential of these compounds in cancer therapy in the future.


Assuntos
Antineoplásicos , Apoptose , Ciclo Celular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal , Inibidores de Histona Desacetilases , Peixe-Zebra , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/síntese química , Humanos , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Histona Desacetilases/metabolismo
3.
J Transl Med ; 21(1): 530, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543570

RESUMO

BACKGROUND: Epithelial cell adhesion molecule (EpCAM) is known to highly expression and promotes cancer progression in many cancer types, including colorectal cancer. While metastasis is one of the main causes of cancer treatment failure, the involvement of EpCAM signaling in metastatic processes is unclear. We propose the potential crosstalk of EpCAM signaling with the HGFR signaling in order to govern metastatic activity in colorectal cancer. METHODS: Immunoprecipitation (IP), enzyme-linked immunosorbent assay (ELISA), and fluorescence resonance energy transfer (FRET) was conducted to explore the extracellular domain of EpCAM (EpEX) and HGFR interaction. Western blotting was taken to determine the expression of proteins in colorectal cancer (CRC) cell lines. The functions of EpEX in CRC were investigated by proliferation, migration, and invasion analysis. The combined therapy was validated via a tail vein injection method for the metastasis and orthotopic colon cancer models. RESULTS: This study demonstrates that the EpEX binds to HGFR and induces downstream signaling in colon cancer cells. Moreover, EpEX and HGF cooperatively mediate HGFR signaling. Furthermore, EpEX enhances the epithelial-to-mesenchymal transition and metastatic potential of colon cancer cells by activating ERK and FAK-AKT signaling pathways, and it further stabilizes active ß-catenin and Snail proteins by decreasing GSK3ß activity. Finally, we show that the combined treatment of an anti-EpCAM neutralizing antibody (EpAb2-6) and an HGFR inhibitor (crizotinib) significantly inhibits tumor progression and prolongs survival in metastatic and orthotopic animal models of colon cancer. CONCLUSION: Our findings illuminate the molecular mechanisms underlying EpCAM signaling promotion of colon cancer metastasis, further suggesting that the combination of EpAb2-6 and crizotinib may be an effective strategy for treating cancer patients with high EpCAM expression.


Assuntos
Neoplasias do Colo , Animais , Molécula de Adesão da Célula Epitelial/metabolismo , Crizotinibe , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Transdução de Sinais , Transição Epitelial-Mesenquimal , Movimento Celular
4.
Front Oncol ; 12: 989077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531045

RESUMO

According to the National Comprehensive Cancer Network and the American Society of Clinical Oncology, the standard treatment for pancreatic cancer (PC) is gemcitabine and fluorouracil. Other chemotherapeutic agents have been widely combined. However, drug resistance remains a huge challenge, leading to the ineffectiveness of cancer therapy. Therefore, we are trying to discover new treatments for PC by utilizing genomic information to identify PC-associated genes as well as drug target genes for drug repurposing. Genomic information from a public database, the cBio Cancer Genomics Portal, was employed to retrieve the somatic mutation genes of PC. Five functional annotations were applied to prioritize the PC risk genes: Kyoto Encyclopedia of Genes and Genomes; biological process; knockout mouse; Gene List Automatically Derived For You; and Gene Expression Omnibus Dataset. DrugBank database was utilized to extract PC drug targets. To narrow down the most promising drugs for PC, CMap Touchstone analysis was applied. Finally, ClinicalTrials.gov and a literature review were used to screen the potential drugs under clinical and preclinical investigation. Here, we extracted 895 PC-associated genes according to the cBioPortal database and prioritized them by using five functional annotations; 318 genes were assigned as biological PC risk genes. Further, 216 genes were druggable according to the DrugBank database. CMap Touchstone analysis indicated 13 candidate drugs for PC. Among those 13 drugs, 8 drugs are in the clinical trials, 2 drugs were supported by the preclinical studies, and 3 drugs are with no evidence status for PC. Importantly, we found that midostaurin (targeted PRKA) and fulvestrant (targeted ESR1) are promising candidate drugs for PC treatment based on the genomic-driven drug repurposing pipelines. In short, integrated analysis using a genomic information database demonstrated the viability for drug repurposing. We proposed two drugs (midostaurin and fulvestrant) as promising drugs for PC.

5.
Eur J Med Chem ; 243: 114773, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36179401

RESUMO

The Ca2+ entry from store-operated Ca2+ channel (SOC) is involved in regulating colorectal cancer progression, such as cell migration. SOC activation is due to STIM1 translocation and interaction with Orai1 upon Ca2+ depletion in the ER. Numerous SOC inhibitors, like 2-APB, have been developed and demonstrated their inhibition effects in the preclinical stage. However, most currently used SOC inhibitors have higher cytotoxicity or opposite effects at different doses, and the drugs to target SOC in the clinic are lacking. In this study, a total of 13 difluorobenzamide compounds had been synthesized and examined the inhibitory effects on SOC with Ca2+ imaging and wound-healing migration assay. Among them, 2,6-Difluoro-N-(5-(4-fluorophenyl)pyridine-2-yl)benzamide (MPT0M004, 8a) demonstrated a prominent inhibitory ability on SOC. Furthermore, the cell proliferation assay results showed that MPT0M004 (8a) had lower cytotoxicity than 2-APB, the reference compound. In the pharmacokinetic study, MPT0M004 (8a) has a long half-life (T1/2 = 24 h) and lower daily dose administered intravenously with an oral bioavailability (F = 34%). Therefore, MPT0M004 (8a) has the potential to be a lead compound as a SOC inhibitor and further develop into a potential drug to treat colorectal cancer.


Assuntos
Canais de Cálcio , Neoplasias Colorretais , Humanos , Canais de Cálcio/metabolismo , Proteína ORAI1 , Cálcio/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Sinalização do Cálcio
6.
Biomed Pharmacother ; 145: 112476, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34864310

RESUMO

Store-operated Ca2+ channel (SOC)-regulated Ca2+ entry is involved in inflammation and colorectal cancer (CRC) progression, but clinically applicable treatments targeting this mechanism are lacking. Recent studies have shown that nonsteroidal anti-inflammatory drugs (NSAIDs) not only inhibit inflammation but they also suppress Ca2+ entry via SOC (SOCE). Therefore, delineating the mechanisms of SOCE inhibition by NSAIDs may lead to new CRC treatments. In this study, we tested eight candidate NSAIDs in Ca2+ imaging experiments and found that Aspirin and Sulindac were the most effective at suppressing SOCE. Furthermore, time-lapse FRET imaging using TIRF microscopy and ground state depletion (GSD) super-resolution (SR) imaging revealed that SOC was inhibited by Aspirin and Sulindac via different mechanisms. Aspirin quickly interrupted the STIM1-Orai1 interaction, whereas Sulindac mainly suppressed STIM1 translocation. Additionally, Aspirin and Sulindac both inhibited metastasis-related endpoints in CRC cells. Both drugs were used throughout the study at doses that suppressed CRC cell migration and invasion without altering cell survival. This is the first study to reveal the differential inhibitory mechanisms of Aspirin and Sulindac on SOC activity. Thus, our results shed new light on the therapeutic potential of Aspirin for CRC and SOCE-related diseases.


Assuntos
Aspirina/farmacologia , Canais de Cálcio , Sinalização do Cálcio/efeitos dos fármacos , Neoplasias Colorretais , Sulindaco/farmacologia , Anti-Inflamatórios não Esteroides , Células CACO-2 , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Metástase Neoplásica/tratamento farmacológico , Pró-Fármacos/farmacologia
7.
Horm Behav ; 130: 104935, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497707

RESUMO

In the present study, we found that tryptophan (TRP) and tyrosine (TYR) levels are increased in hemolymph of male Nauphoeta cinerea after social contact with either male or female conspecifics. Hemolymph was collected from individual males before and after the social interactions, and samples were analyzed by HPLC-ECD; analyte identities were confirmed by UPLC/MS. After a male-male first encounter fight, hemolymph TRP and TYR levels were significantly increased in dominants compared with the levels before the encounter. Conversely, TRP and TYR in subordinates were maintained at levels similar to those before the encounter. While after-fight TRP and TYR levels were significantly higher in dominants than subordinates, no significant differences were found in the contestants before the fight. Moreover, contact with an isolated male antenna was sufficient to stimulate attack behavior and increase hemolymph TRP and TYR titers to levels similar to those seen in dominants. After a male-female interaction, two distinct outcomes could be observed. Either hemolymph TRP and TYR levels were increased in successfully mated males, or TRP and TYR levels were unchanged in males that only exhibited premating wing-raising behavior but failed in mating. After contacting the antenna of a socially naïve male with an isolated female antenna, three patterns of behavior and related amino acid response were observed: 1) only premating wing-raising behavior with significant increase of TRP and TYR levels, 2) only attack behavior with significant increase of TRP and TYR levels, and 3) mixed wing-raising and attack behaviors with no significant changes in TRP and TYR levels. The present results show a robust response of hemolymph TRP and TYR to social contact. In light of previously characterized responses in pheromone and juvenile hormone levels, these amine responses suggest that the physiological response of N. cinerea to social contact is multi-dimensional.


Assuntos
Baratas , Hemolinfa/metabolismo , Tirosina/metabolismo , Animais , Masculino , Interação Social , Triptofano
8.
Biology (Basel) ; 9(11)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182378

RESUMO

Hepatocellular carcinoma (HCC) often develops from chronic hepatitis B (CHB) through replication of hepatitis B virus (HBV) infection. Calcium (Ca2+) signaling plays an essential role in HBV replication. Store-operated calcium (SOC) channels are a major pathway of Ca2+ entry into non-excitable cells such as immune cells and cancer cells. The basic components of SOC signaling include the STIM1 and ORAI1 genes. However, the roles of STIM1 and ORAI1 in HBV-mediated HCC are still unclear. Thus, long-term follow-up of HBV cohort was carried out in this study. This study recruited 3631 patients with chronic hepatitis (345 patients with HCC, 3286 patients without HCC) in a Taiwanese population. Genetic variants of the STIM1 and ORAI1 genes were detected using an Axiom CHB1 genome-wide array. Clinical associations of 40 polymorphisms were analyzed. Three of the STIM1 single-nucleotide polymorphisms (SNPs) (rs6578418, rs7116520, and rs11030472) and one SNP of ORAI1 (rs6486795) showed a trend of being associated with HCC disease (p < 0.05). However, after correction for multiple testing, none of the SNPs reached a significant level (q > 0.05); in contrast, neither STIM1 nor ORAI1 showed a significant association with HCC progression in CHB patients. Functional studies by both total internal reflection fluorescence images and transwell migration assay indicated the critical roles of SOC-mediated signaling in HCC migration. In conclusion, we reported a weak correlation between STIM1/ORAI1 polymorphisms and the risk of HCC progression in CHB patients.

9.
Pharmacol Res ; 161: 105203, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32950641

RESUMO

Even though many genetic risk loci for human diseases have been identified and comprehensively cataloged, strategies to guide clinical research by integrating the extensive results of genetic studies and biological resources are still limited. Moreover, integrative analyses that provide novel insights into disease biology are expected to be especially useful for drug discovery. Herein, we used text mining of genetic studies on colorectal cancer (CRC) and assigned biological annotations to identified risk genes in order to discover novel drug targets and potential drugs for repurposing. Risk genes for CRC were obtained from PubMed text mining, and for each gene, six functional and bioinformatic annotations were analyzed. The annotations include missense mutations, cis-expression quantitative trait loci (cis-eQTL), molecular pathway analyses, protein-protein interactions (PPIs), a genetic overlap with knockout mouse phenotypes, and primary immunodeficiency (PID). We then prioritized the biological risk candidate genes according to a scoring system of the six functional annotations. Each functional annotation was assigned one point, and those genes with a score ≥2 were designated "biological CRC risk genes". Using this method, we revealed 82 biological CRC risk genes, which were mapped to 128 genes in an expanded PPI network. Further utilizing DrugBank and the Therapeutic Target Database, we found 21 genes in our list that are targeted by 166 candidate drugs. Based on data from ClinicalTrials.gov and literature review, we found four known target genes with six drugs for clinical treatment in CRC, and three target genes with nine drugs supported by previous preclinical results in CRC. Additionally, 12 genes are targeted by 32 drugs approved for other indications, which can possibly be repurposed for CRC treatment. Finally, analysis from Connectivity Map (CMap) showed that 18 drugs have a high potential for CRC.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Biologia Computacional , Reposicionamento de Medicamentos , Redes Reguladoras de Genes , Polimorfismo de Nucleotídeo Único , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Humanos , Mapas de Interação de Proteínas
10.
J Biomed Sci ; 25(1): 76, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30404641

RESUMO

BACKGROUND: The brain predominantly expressed RING finger protein, Znf179, is known to be important for embryonic neuronal differentiation during brain development. Downregulation of Znf179 has been observed in motor neurons of adult mouse models for amyotrophic lateral sclerosis (ALS), yet the molecular function of Znf179 in neurodegeneration has never been previously described. Znf179 contains the classical C3HC4 RING finger domain, and numerous proteins containing C3HC4 RING finger domain act as E3 ubiquitin ligases. Hence, we are interested to identify whether Znf179 possesses E3 ligase activity and its role in ALS neuropathy. METHODS: We used in vivo and in vitro ubiquitination assay to examine the E3 ligase autoubiquitination activity of Znf179 and its effect on 26S proteasome activity. To search for the candidate substrates of Znf179, we immunoprecipitated Znf179 and subjected to mass spectrometry (MS) analysis to identify its interacting proteins. We found that ALS/ FTLD-U (frontotemporal lobar degeneration (FTLD) with ubiquitin inclusions)-related neurodegenerative TDP-43 protein is the E3 ligase substrate of Znf179. To further clarify the role of E3 ubiquitin ligase Znf179 in neurodegenerative TDP-43-UBI (ubiquitinated inclusions) (+) proteinopathy, the effect of Znf179-mediated TDP-43 polyubiquitination on TDP-43 protein stability, aggregate formation and nucleus/cytoplasm mislocalization were evaluated in vitro cell culture system and in vivo animal model. RESULTS: Here we report that Znf179 is a RING E3 ubiquitin ligase which possesses autoubiquitination feature and regulates 26S proteasome activity through modulating the protein expression levels of 19S/20S proteasome subunits. Our immunoprecipitation assay and MS analysis results revealed that the neuropathological TDP-43 protein is one of its E3 ligase substrate. Znf179 interactes with TDP-43 protein and mediates polyubiquitination of TDP-43 in vitro and in vivo. In neurodegenerative TDP-43 proteinopathy, we found that Znf179-mediated polyubiquitination of TDP-43 accelerates its protein turnover rate and attenuates insoluble pathologic TDP-43 aggregates, while knockout of Znf179 in mouse brain results in accumulation of insoluble TDP-43 and cytosolic TDP-43 inclusions in cortex, hippocampus and midbrain regions. CONCLUSIONS: Here we unveil the important role for the novel E3 ligase Znf179 in TDP-43-mediated neuropathy, and provide a potential therapeutic strategy for combating ALS/ FTLD-U neurodegenerative pathologies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Ubiquitina-Proteína Ligases/metabolismo
11.
J Physiol ; 595(16): 5525-5544, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28627017

RESUMO

KEY POINTS: The proton sensing ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) promotes expression of the canonical transient receptor potential channel subunit TRPC4 in normal and transformed cerebellar granule precursor (DAOY) cells. OGR1 and TRPC4 are prominently expressed in healthy cerebellar tissue throughout postnatal development and in primary cerebellar medulloblastoma tissues. Activation of TRPC4-containing channels in DAOY cells, but not non-transformed granule precursor cells, results in prominent increases in [Ca2+ ]i and promotes cell motility in wound healing and transwell migration assays. Medulloblastoma cells not arising from granule precursor cells show neither prominent rises in [Ca2+ ]i nor enhanced motility in response to TRPC4 activation unless they overexpressTRPC4. Our results suggest that OGR1 enhances expression of TRPC4-containing channels that contribute to enhanced invasion and metastasis of granule precursor-derived human medulloblastoma. ABSTRACT: Aberrant intracellular Ca2+ signalling contributes to the formation and progression of a range of distinct pathologies including cancers. Rises in intracellular Ca2+ concentration occur in response to Ca2+ influx through plasma membrane channels and Ca2+ release from intracellular Ca2+ stores, which can be mobilized in response to activation of cell surface receptors. Ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) is a proton-sensing Gq -coupled receptor that is most highly expressed in cerebellum. Medulloblastoma (MB) is the most common paediatric brain tumour that arises from cerebellar precursor cells. We found that nine distinct human MB samples all expressed OGR1. In both normal granule cells and the transformed human cerebellar granule cell line DAOY, OGR1 promoted expression of the proton-potentiated member of the canonical transient receptor potential (TRPC) channel family, TRPC4. Consistent with a role for TRPC4 in MB, we found that all MB samples also expressed TRPC4. In DAOY cells, activation of TRPC4-containing channels resulted in large Ca2+ influx and enhanced migration, while in normal cerebellar granule (precursor) cells and MB cells not derived from granule precursors, only small levels of Ca2+ influx and no enhanced migration were observed. Our results suggest that OGR1-dependent increases in TRPC4 expression may favour formation of highly Ca2+ -permeable TRPC4-containing channels that promote transformed granule cell migration. Increased motility of cancer cells is a prerequisite for cancer invasion and metastasis, and our findings may point towards a key role for TRPC4 in progression of certain types of MB.


Assuntos
Cálcio/metabolismo , Meduloblastoma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular Tumoral , Movimento Celular , Células Cultivadas , Cerebelo/citologia , Humanos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Permeabilidade , Canais de Cátion TRPC/genética
12.
J Biol Chem ; 292(30): 12589-12598, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28630044

RESUMO

Topoisomerases play crucial roles in DNA replication, transcription, and recombination. For instance, topoisomerase II (Top2) is critically important for resolving DNA tangles during cell division, and as such, it is a broad anticancer drug target. Top2 regulates DNA topology by transiently breaking one double-stranded DNA molecule (cleavage), allowing a second double strand to pass through the opened DNA gate (opening), and then closing the gate by rejoining the broken ends. Drugs that modulate Top2 catalysis may therefore affect enzymatic activity at several different steps. Previous studies have focused on examining DNA cleavage and ligation; however, the dynamic opening and closing of the DNA gate has been less explored. Here, we used the single-molecule Förster resonance energy transfer (smFRET) method to observe the open and closed state of the DNA gate and to measure dwell times in each state. Our results show that Top2 binds and bends DNA to increase the energy transfer efficiency (EFRET), and ATP treatment further induces the fluctuation of EFRET, representing the gate opening and closing. Additionally, our results demonstrate that both types of Top2-targeting anticancer drugs, the catalytic inhibitor dexrazoxane (ICRF187) and mechanistic poison teniposide (VM26), can interfere with DNA gate dynamics and shorten the dwell time in the closed state. Moreover, Top2 bound to the nonhydrolyzable ATP analog 5'-adenylyl-ß,γ-imidodiphosphate exhibits altered DNA gate dynamics, but the DNA gate appears to open and close even after N-gate closure. In summary, we have utilized single-molecule detection to unravel Top2 DNA gate dynamics and reveal previously unknown effects of Top2 drugs on these dynamics.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Drosophila melanogaster/enzimologia , Transferência Ressonante de Energia de Fluorescência , Animais , Antineoplásicos/farmacologia , DNA/química , DNA/metabolismo , DNA Topoisomerases Tipo II/química , Dexrazoxano/farmacologia , Transferência de Energia , Relação Estrutura-Atividade
13.
Cancer Lett ; 386: 110-122, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865799

RESUMO

Obese patients have higher levels of free fatty acids (FFAs) in their plasma and a higher risk of cancer than their non-obese counterparts. However, the mechanisms involved in the regulation of cancer metastasis by FFAs remain unclear. In this study, we found that oleic acid (OA) induced angiopoietin-like 4 (ANGPTL4) protein expression and secretion and conferred anoikis resistance to head and neck squamous cell carcinomas (HNSCCs). The autocrine production of OA-induced ANGPTL4 further promoted HNSCC migration and invasion. In addition, the expression of peroxisome proliferator-activated receptor (PPAR) was essential for the OA-induced ANGPTL4 expression and invasion. The levels of OA-induced epithelial-mesenchymal transition markers, such as vimentin, MMP-9, and fibronectin and its downstream effectors Rac1/Cdc42, were significantly reduced in ANGPTL4-depleted cells. Knocking down fibronectin inhibited the expression of MMP-9 and repressed OA- and recombinant ANGPTL4-induced HNSCC invasion. On the other hand, ANGPTL4 siRNA inhibited OA-induced MMP-9 expression, which was reversed in fibronectin-overexpressing cells. Furthermore, the depletion of ANGPTL4 impeded the OA-primed metastatic seeding of tumor cells in the lungs. These results demonstrate that OA enhances HNSCC metastasis through the ANGPTL4/fibronectin/Rac1/Cdc42 and ANGPTL4/fibronectin/MMP-9 signaling axes.


Assuntos
Angiopoietinas/metabolismo , Anoikis/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Movimento Celular/efeitos dos fármacos , Fibronectinas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias Pulmonares/metabolismo , Ácido Oleico/toxicidade , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/genética , Animais , Comunicação Autócrina/efeitos dos fármacos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/secundário , Linhagem Celular Tumoral , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibronectinas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos SCID , Invasividade Neoplásica , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fatores de Tempo , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Transfecção , Regulação para Cima , Vimentina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
Oncoimmunology ; 5(11): e1214789, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27999736

RESUMO

Dysfunctional intratumoral immune reactions are shaped by complex networks of cytokines (including chemokines), and how the cytokinome landscape coordinates with tumors has not been systematically investigated. Using high-dimensional datasets of cancer specimens, we explored the transcript abundance, biomarker potential, and prognostic impact of local cytokines across 19 tumor types. We found that most cytokines are highly locally dysregulated (p = 0.024), revealing spatiotemporal pattern of local cytokines in the development of cancers. In addition, we noted the significant downregulation of CCL14 and CXCL12 in 9 and 10 cancer types, respectively, implying their crucial roles in tumor pathogenesis. We also found that cytokines showed significantly higher specificity properties compared to other protein-coding genes (PCGs) in primary tumor specimens (p << 0.001), indicating that tissue context remains an issue when considering cancer cytokinomes. Finally, we linked concentrations of local cytokines to patient survival. Our results thus provide a panoramic view of pan-cancer cytokinomes, which highlights tumor type specificity of cancer-related cytokines and their impacts on disease prognosis.

15.
Biochem Biophys Rep ; 6: 203-208, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28955878

RESUMO

This paper proposes an effective approach to distinguish whether samples include Human Papilloma virus type-16 (HPV16) by Atomic force microscopy (AFM). AFM is an important instrument in nanobiotechnology field. At first we identified the HPV16 by Polymerase chain reaction (PCR) analysis and Western blotting from specimen of the HPV patient (E12) and the normal (C2), and then we used an AFM to observe the surface ultrastructure by tapping mode and to measure the unbinding force between HPV16 coupled to an AFM tip and anti-HPV16 L1 coated on the substrate surface by contact mode. The experimental results by tapping mode show that the size of a single HPV viron was similar to its SEM image from the previous literatures; moreover, based on the purposed methods and the analysis, two obvious findings that we can determine whether or not the subject is a HPV patient can be derived from the results; one is based on the distribution of unbinding forces, and the other is based on the distribution of the stiffness. Furthermore, the proposed method could be a useful technique for further investigating the potential role among subtypes of HPVs in the oncogenesis of human cervical cancer.

16.
Pharmacol Res ; 104: 31-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26675717

RESUMO

Triple negative breast cancer (TNBC) accounts for approximately 15-20% of all types of breast cancer, and treatment is still limited. This type of breast cancer shows a high risk of recurrence, visceral metastasis, a worse prognosis, and shorter distant metastasis-free survival. Several studies have been reported that genetics factors are associated with breast cancer disease progression and patients' survival. In this study, we combined Taiwanese microarray data from the GEO database and The Cancer Genome Atlas (TCGA) database to study the role of Integrin Beta1 (ITGB1) in TNBC. Two triple negative breast cancer cell lines (MDA-MB-231; MDA-MB-468) were used to validate the functions of ITGB1. We found that a higher ITGB1 gene expression level was associated to lower survival. Silencing of ITGB1 inhibited TNBC cell migration, invasion and store-operated calcium influx. Our study provided a potential candidate biomarker for breast cancer cells migration, invasion and TNBC patients' survival.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Integrina beta1/genética , Neoplasias de Mama Triplo Negativas/genética , Povo Asiático/genética , Cálcio/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Integrina beta1/metabolismo , Prognóstico , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Taiwan
17.
Oncotarget ; 6(10): 7741-57, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25797258

RESUMO

Overexpression of the epidermal growth factor (EGF) receptor (EGFR) is associated with enhanced invasion and metastasis in head and neck squamous cell carcinoma (HNSCC). Long Pentraxin PTX3 is involved in immune escape in cancer cells. Here, we identified PTX3 as a promoting factor that mediates EGF-induced HNSCC metastasis. EGF-induced PTX3 transcriptional activation is via the binding of c-Jun to the activator protein (AP)-1 binding site of the PTX3 promoter. PI3K/Akt and NF-κB were essential for the PTX3 activation. EGF-induced PTX3 expression was blocked in c-Jun- and NF-κB-knockdown cells. EGF-mediated PTX3 secretion resulted in the enhancement of cell migration and invasion, and interactions between cancer and endothelial cells. The tail-vein injection animal model revealed that depletion of PTX3 decreased EGF-primed tumor cell metastatic seeding of the lungs. In addition, fibronectin, matrix metalloproteinase-9 (MMP9) and E-cadherin were essential components in EGFR/PTX3-mediated cancer metastasis. In conclusion, PI3K/Akt and NF-κB-dependent regulation of AP-1 mediates PTX3 transcriptional responses to EGF. Autocrine production of EGF-induced PTX3 in turn induces metastatic molecules, activating inflammatory cascades and metastasis.


Assuntos
Proteína C-Reativa/genética , Carcinoma de Células Escamosas/genética , Fator de Crescimento Epidérmico/farmacologia , Neoplasias de Cabeça e Pescoço/genética , Componente Amiloide P Sérico/genética , Animais , Proteína C-Reativa/biossíntese , Proteína C-Reativa/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Xenoenxertos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos SCID , NF-kappa B/metabolismo , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Componente Amiloide P Sérico/biossíntese , Componente Amiloide P Sérico/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fator de Transcrição AP-1/metabolismo , Transfecção
18.
PLoS One ; 9(6): e99242, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24921657

RESUMO

BACKGROUND: Unique characteristics of tumor microenvironments can be used as targets of cancer therapy. The aryl hydrocarbon receptor nuclear translocator (ARNT) is an important mediator of tumor progression. However, the functional role of ARNT in chemotherapeutic drug-treated cancer remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, we found that knockdown of ARNT in cancer cells reduced the proliferation rate and the transformation ability of those cells. Moreover, cisplatin-induced cell apoptosis was enhanced in ARNT-deficient cells. Expression of ARNT also decreased in the presence of cisplatin through proteasomal degradation pathway. However, ARNT level was maintained in cisplatin-treated drug-resistant cells, which prevented cell from apoptosis. Interestingly, reactive oxygen species (ROS) dramatically increased when ARNT was knocked down in cancer cells, enhancing cisplatin-induced apoptosis. ROS promoted cell death was inhibited in cells treated with the ROS scavenger, N-acetyl-cysteine (NAC). CONCLUSIONS/SIGNIFICANCE: These results suggested that the anticancer activity of cisplatin is attributable to its induction of the production of ROS by ARNT degradation. Targeting ARNT could be a potential strategy to eliminate drug resistance in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Invasividade Neoplásica , Proteólise/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo
19.
PLoS One ; 9(5): e97008, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24809695

RESUMO

Topoisomerases are a family of vital enzymes capable of resolving topological problems in DNA during various genetic processes. Topoisomerase poisons, blocking reunion of cleaved DNA strands and stabilizing enzyme-mediated DNA cleavage complex, are clinically important antineoplastic and anti-microbial agents. However, the rapid rise of drug resistance that impedes the therapeutic efficacy of these life-saving drugs makes the discovering of new lead compounds ever more urgent. We report here a facile high throughput screening system for agents targeting human topoisomerase IIα (Top2α). The assay is based on the measurement of fluorescence anisotropy of a 29 bp fluorophore-labeled oligonucleotide duplex. Since drug-stabilized Top2α-bound DNA has a higher anisotropy compared with free DNA, this assay can work if one can use a dissociating agent to specifically disrupt the enzyme/DNA binary complexes but not the drug-stabilized ternary complexes. Here we demonstrate that NaClO4, a chaotropic agent, serves a critical role in our screening method to differentiate the drug-stabilized enzyme/DNA complexes from those that are not. With this strategy we screened a chemical library of 100,000 compounds and obtained 54 positive hits. We characterized three of them on this list and demonstrated their effects on the Top2α-mediated reactions. Our results suggest that this new screening strategy can be useful in discovering additional candidates of anti-cancer agents.


Assuntos
Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Ensaios de Triagem em Larga Escala , Inibidores da Topoisomerase II/farmacologia , Sequência de Bases , DNA/química , DNA/genética , DNA/metabolismo , Interações Medicamentosas , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Conformação de Ácido Nucleico , Percloratos/farmacologia , Compostos de Sódio/farmacologia , Teniposídeo/farmacologia
20.
Cell Calcium ; 50(1): 27-35, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21605904

RESUMO

Histamine, an important chemical mediator, has been shown to regulate inflammation and allergic responses. Stimulation of histamine receptors results in a significant increase in cytoplasmic Ca(2+), which could be mediated by inositol trisphosphate (IP(3))-dependent store-operated Ca(2+) channels (SOC). However, the link between histamine-mediated signaling and activation of inflammatory genes such as cyclooxygenase 2 (COX-2) is still unknown. Our study indicated that the COX-2 protein was highly expressed in human lung cancer cells. Following stimulation with 10 µM of histamine, both store-operated Ca(2+) entry (SOCE) and COX-2 gene expression were evoked. Histamine-mediated COX-2 activation can be prevented by 2-APB and SKF-96365, SOC channel inhibitors. In addition, deletion analysis of the COX-2 promoter suggested that the region between -80 bp and -250 bp, which contains NFκB binding sites, is the key element for histamine-mediated signaling. Knocking down ORAI1, one of the essential molecules of store-operated calcium channels, attenuated histamine-mediated COX-2 expression and NFκB activation. These results indicated that ORAI1-mediated NFκB activation was an important signaling pathway, responsible for transmitting histamine signals that trigger inflammatory reactions.


Assuntos
Canais de Cálcio/metabolismo , Ciclo-Oxigenase 2/metabolismo , Histamina/farmacologia , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Compostos de Boro/química , Compostos de Boro/farmacologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/química , Canais de Cálcio/genética , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Humanos , Imidazóis/química , Imidazóis/farmacologia , Neoplasias Pulmonares/patologia , Proteína ORAI1 , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA