Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Analyst ; 149(13): 3530-3536, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38757525

RESUMO

ATP plays a crucial role in cell energy supply, so the quantification of intracellular ATP levels is particularly important for understanding many physio-pathological processes. The intracellular quantification of this non-electroactive molecule can be realized using aptamer-modified nanoelectrodes, but is hindered by the limited quantity of modification and electroactive tags on the nanosized electrodes. Herein, we developed a simple but effective electrochemical signal amplification strategy for intracellular ATP detection, which replaces the regular ATP aptamer-linked ferrocene monomer with a polymer, thus greatly magnifying the amounts of electrochemical reporters linked to one chain of the aptamer and enhancing the signals. This ferrocene polymer-ATP aptamer was further immobilized onto Au nanowire electrodes (SiC@C@Au NWEs) to achieve accurate quantification of intracellular ATP in single cells, presenting high electrochemical signal output and high specificity. This work not only provides a powerful tool for quantifying intracellular ATP but also offers a simple and versatile strategy for electrochemical signal amplification in the detection of broader non-electroactive molecules involved in different kinds of intracellular physiological processes.


Assuntos
Trifosfato de Adenosina , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Compostos Ferrosos , Ouro , Metalocenos , Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/química , Humanos , Ouro/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Metalocenos/química , Compostos Ferrosos/química , Técnicas Biossensoriais/métodos , Eletrodos , Polímeros/química , Nanofios/química , Limite de Detecção , Células HeLa
2.
Nat Nanotechnol ; 19(4): 524-533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38172432

RESUMO

Exposure to widely used inert fibrous nanomaterials (for example, glass fibres or carbon nanotubes) may result in asbestos-like lung pathologies, becoming an important environmental and health concern. However, the origin of the pathogenesis of such fibres has not yet been clearly established. Here we report an electrochemical nanosensor that is used to monitor and quantitatively characterize the flux and dynamics of reactive species release during the frustrated phagocytosis of glass nanofibres by single macrophages. We show the existence of an intense prolonged release of reactive oxygen and nitrogen species by single macrophages near their phagocytic cups. This continued massive leakage of reactive oxygen and nitrogen species damages peripheral cells and eventually translates into chronic inflammation and lung injury, as seen during in vitro co-culture and in vivo experiments.


Assuntos
Nanofibras , Nanotubos de Carbono , Oxigênio , Nanotubos de Carbono/química , Fagocitose , Macrófagos , Espécies Reativas de Oxigênio
3.
Angew Chem Int Ed Engl ; 62(51): e202313612, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37909054

RESUMO

The glutathione (GSH) system is one of the most powerful intracellular antioxidant systems for the elimination of reactive oxygen species (ROS) and maintaining cellular redox homeostasis. However, the rapid kinetics information (at the millisecond to the second level) during the dynamic antioxidation process of the GSH system remains unclear. As such, we specifically developed a novel dual-wire nanosensor (DWNS) that can selectively and synchronously measure the levels of GSH and ROS with high temporal resolution, and applied it to monitor the transient ROS generation as well as the rapid antioxidation process of the GSH system in individual cancer cells. These measurements revealed that the glutathione peroxidase (GPx) in the GSH system is rapidly initiated against ROS burst in a sub-second time scale, but the elimination process is short-lived, ending after a few seconds, while some ROS are still present in the cells. This study is expected to open new perspectives for understanding the GSH antioxidant system and studying some redox imbalance-related physiological.


Assuntos
Antioxidantes , Estresse Oxidativo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Glutationa/metabolismo , Oxirredução
4.
Angew Chem Int Ed Engl ; 62(43): e202309671, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37672359

RESUMO

Nanochannel technology has emerged as a powerful tool for label-free and highly sensitive detection of protein folding/unfolding status. However, utilizing the inner walls of a nanochannel array may cause multiple events even for proteins with the same conformation, posing challenges for accurate identification. Herein, we present a platform to detect unfolded proteins through electrical and optical signals using nanochannel arrays with outer-surface probes. The detection principle relies on the specific binding between the maleimide groups in outer-surface probes and the protein cysteine thiols that induce changes in the ionic current and fluorescence intensity responses of the nanochannel array. By taking advantage of this mechanism, the platform has the ability to differentiate folded and unfolded state of proteins based on the exposure of a single cysteine thiol group. The integration of these two signals enhances the reliability and sensitivity of the identification of unfolded protein states and enables the distinction between normal cells and Huntington's disease mutant cells. This study provides an effective approach for the precise analysis of proteins with distinct conformations and holds promise for facilitating the diagnoses of protein conformation-related diseases.

5.
Proc Natl Acad Sci U S A ; 120(19): e2219994120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126689

RESUMO

Glutamate (Glu) is the major excitatory transmitter in the nervous system. Impairment of its vesicular release by ß-amyloid (Aß) oligomers is thought to participate in pathological processes leading to Alzheimer's disease. However, it remains unclear whether soluble Aß42 oligomers affect intravesicular amounts of Glu or their release in the brain, or both. Measurements made in this work on single Glu varicosities with an amperometric nanowire Glu biosensor revealed that soluble Aß42 oligomers first caused a dramatic increase in vesicular Glu storage and stimulation-induced release, accompanied by a high level of parallel spontaneous exocytosis, ultimately resulting in the depletion of intravesicular Glu content and greatly reduced release. Molecular biology tools and mouse models of Aß amyloidosis have further established that the transient hyperexcitation observed during the primary pathological stage is mediated by an altered behavior of VGLUT1 responsible for transporting Glu into synaptic vesicles. Thereafter, an overexpression of Vps10p-tail-interactor-1a, a protein that maintains spontaneous release of neurotransmitters by selective interaction with t-SNAREs, resulted in a depletion of intravesicular Glu content, triggering advanced-stage neuronal malfunction. These findings are expected to open perspectives for remediating Aß42-induced neuronal hyperactivity and neuronal degeneration.


Assuntos
Doença de Alzheimer , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Fragmentos de Peptídeos/metabolismo
8.
Int J Surg ; 109(8): 2500-2508, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246971

RESUMO

STUDY OBJECTIVE: The role of transversus thoracic muscle plane blocks (TTMPBs) during cardiac surgery is controversial. We conducted a systematic review to establish the effectiveness of this procedure. DESIGN: Systematic review. We searched PubMed, Embase, Web of Science, CENTRAL, WanFang Data, and the China National Knowledge Infrastructure to June 2022, and followed the GRADE approach to evaluate the certainty of evidence. STUDY ELIGIBILITY CRITERIA: Eligible studies enrolled adult patients scheduled to undergo cardiac surgery and randomized them to receive a TTMPB or no block/sham block. MAIN RESULTS: Nine trials that enrolled 454 participants were included. Compared to no block/sham block, moderate certainty evidence found that TTMPB probably reduces postoperative pain at rest at 12 h [weighted mean difference (WMD) -1.51 cm on a 10 cm visual analogue scale for pain, 95% CI -2.02 to -1.00; risk difference (RD) for achieving mild pain or less (≤3 cm), 41%, 95% CI 17-65) and 24 h (WMD -1.07 cm, 95% CI -1.83 to -0.32; RD 26%, 95% CI 9-37). Moderate certainty evidence also supported that TTMPB probably reduces pain during movement at 12 h (WMD -3.42 cm, 95% CI -4.47 to -2.37; RD 46%, 95% CI 12-80) and at 24 h (WMD -1.73 cm, 95% CI -3.24 to -0.21; RD 32%, 95% CI 5-59), intraoperative opioid use [WMD -28 milligram morphine equivalent (MME), 95% CI -42 to -15], postoperative opioid consumption (WMD -17 MME, 95% CI -29 to -5), postoperative nausea and vomiting (absolute risk difference 255 less per 1000 persons, 95% CI 140-314), and intensive care unit (ICU) length of stay (WMD -13 h, 95% CI -21 to -6). CONCLUSION: Moderate certainty evidence showed TTMPB during cardiac surgery probably reduces postoperative pain at rest and with movement, opioid consumption, ICU length of stay, and the incidence of nausea and vomiting.


Assuntos
Analgésicos Opioides , Procedimentos Cirúrgicos Cardíacos , Adulto , Humanos , Analgésicos Opioides/uso terapêutico , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/prevenção & controle , Náusea e Vômito Pós-Operatórios , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Músculos
9.
iScience ; 26(3): 106089, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36876120

RESUMO

Oral squamous cell carcinoma (OSCC) is a common malignancy in the world. Recently, scientists have focused on therapeutic strategies to determine the regulation of tumors and design molecules for specific targets. Some studies have demonstrated the clinical significance of human leukocyte antigen G (HLA-G) in malignancy and NLR family pyrin domain-containing 3 (NLRP3) inflammasome in promoting tumorigenesis in OSCC. This is the first study to investigate whether aberrant epidermal growth factor receptor (EGFR) induces HLA-G expression through NLRP3 inflammasome-mediated IL-1ß secretion in OSCC. Our results showed that the upregulation of NLRP3 inflammasome leads to abundant HLA-G in the cytoplasm and cell membrane of FaDu cells. In addition, we also generated anti-HLA-G chimeric antigen receptor (CAR)-T cells and provided evidence for their effects in EGFR-mutated and overexpressed oral cancer. Our results may be integrated with OSCC patient data to translate basic research into clinical significance and may lead to novel EGFR-aberrant OSCC treatment.

10.
Biosens Bioelectron ; 222: 114928, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36450163

RESUMO

Reactive oxygen species (ROS) and nicotinamide adenine dinucleotide (NADH) are important intracellular redox-active molecules involved in various pathological processes including inflammation, neurodegenerative diseases, and cancer. However, the fast dynamic changes and mutual regulatory kinetic relationship between intracellular ROS and NADH in these biological processes are still hard to simultaneously investigate. A dual-channel nanowire electrode (DC-NWE) integrating two conductive nanowires, one functionalized with platinum nanoparticles and the other with conductive polymer, was nanofabricated for the selective and simultaneous real-time monitoring of intracellular ROS and NADH release by mitochondria in single living MCF-7 tumoral cells stimulated by resveratrol. The production of ROS was observed to occur tenths of a second before the release of NADH, a significant new piece of information suggesting a mechanism of action of resveratrol. Beyond the importance of the specific data gathered in this study, this work established the feasibility of simultaneously monitoring multiple species and analyzing their kinetics relationships over sub-second time scales thanks to dual-channel nanowire electrodes. It is believed that this concept and its associated nanoelectrochemical tools might benefit to a deeper understanding of mutual regulatory relationship between intracellular crucial molecular markers during physiological and pathological processes as well as for evaluating medical treatments.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , NAD/química , Espécies Reativas de Oxigênio , Cinética , Resveratrol , Platina , Oxirredução
11.
BMC Med Genomics ; 15(1): 256, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514044

RESUMO

BACKGROUND: Most prostate cancer patients die from metastasis and lack accurate efficacious biomarkers to monitor the disease behavior, optimize treatment and assess prognosis. Herein, we aimed to identify meaningful lncRNA biomarkers associated with prostate cancer metastatic progression. METHODS: By repurposing microarray probes, 11,624 lncRNAs in prostate cancer were obtained from Gene Expression Omnibus  database (GSE46691, N = 545; GSE29079, N = 235; GSE94767, N = 130). Weighted gene co-expression network analysis was applied to determine the co-expression lncRNA network pertinent to metastasis. Hub lncRNAs were screened. RNA-seq and clinical data from the Cancer Genome Atlas prostate cancer (TCGA-PRAD) cohort (N = 531) were analyzed. Transwell assay and bioinformatic analysis were performed for mechanism research. RESULTS: The high expression levels of nine hub lncRNAs (FTX, AC005261.1, NORAD, LINC01578, AC004542.2, ZFAS1, EBLN3P, THUMPD3-AS1, GAS5) were significantly associated with Gleason score and increased probability of metastatic progression. Among these lncRNAs, ZFAS1 had the consistent trends of expression in all of the analysis from different cohorts, and the Kaplan-Meier survival analyses showed higher expression of ZFAS1 was associated with shorter relapse free survival. In-vitro studies confirmed that downregulation of ZFAS1 decreased prostate cancer cell migration. CONCLUSION: We offered some new insights into discovering lncRNA markers correlated with metastatic progression of prostate cancer using the WGCNA. Some may serve as potential prognostic biomarkers and therapeutic targets for advanced metastatic prostate cancer.


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Humanos , RNA Longo não Codificante/genética , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia/genética , Prognóstico , Neoplasias da Próstata/genética
12.
Mol Cancer ; 21(1): 169, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999636

RESUMO

BACKGROUND: Genetic variants associated with acute side effects of radiotherapy in nasopharyngeal carcinoma (NPC) remain largely unknown. METHODS: We performed a two-stage genome-wide association analysis including a total of 1084 patients, where 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant variants were then validated in an independent cohort of 765 patients using the MassARRAY system. Gene mapping, linkage disequilibrium, genome-wide association analysis, and polygenic risk score were conducted or calculated using FUMA, LDBlockShow, PLINK, and PRSice software programs, respectively. RESULTS: Five SNPs (rs6711678, rs4848597, rs4848598, rs2091255, and rs584547) showed statistical significance after validation. Radiotherapy toxicity was more serious in mutant minor allele carriers of all five SNPs. Stratified analysis further indicated that rs6711678, rs4848597, rs4848598, and rs2091255 correlated with skin toxicity in patients of EBV positive, late stage (III and IV), receiving both concurrent chemoradiotherapy and induction/adjuvant chemotherapy, and with OR values ranging from 1.92 to 2.66. For rs584547, high occurrence of dysphagia was found in A allele carriers in both the discovery (P = 1.27 × 10- 6, OR = 1.55) and validation (P = 0.002, OR = 4.20) cohorts. Furthermore, prediction models integrating both genetic and clinical factors for skin reaction and dysphagia were established. The area under curve (AUC) value of receiver operating characteristic (ROC) curves were 0.657 (skin reaction) and 0.788 (dysphagia). CONCLUSIONS: Rs6711678, rs4848597, rs4848598, and rs2091255 on chromosome 2q14.2 and rs584547 were found to be novel risk loci for skin toxicity and dysphagia in NPC patients receiving radiotherapy. TRIAL REGISTRATION: Chinese Clinical Trial Register (registration number: ChiCTR-OPC-14005257 and CTXY-140007-2).


Assuntos
Transtornos de Deglutição , Neoplasias Nasofaríngeas , Quimiorradioterapia , Transtornos de Deglutição/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/radioterapia
13.
Ann Transl Med ; 10(7): 408, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35530961

RESUMO

Background: Ginsenoside compound K (GC-K), generated from ginseng saponins bioconverted by gut microbiota, has potential anti-colorectal cancer (CRC) effects. Meanwhile, GC-K may interact with gut microbiota, playing important roles in the occurrence and development of CRC. However, the effects of gut microbiota on the preventive and therapeutic effects of GC-K in CRC remain to be elucidated. Methods: The anti-CRC effects of GC-K were evaluated in an azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colitis-associated CRC Balb/c mice model under the dosage of 30 and 60 mg/kg. Stool samples were collected during the experiments for profiling gut microbiota by 16S rRNA sequencing. Correlative analysis between gut microbiota and anti-CRC effect of GC-K was also assessed. Finally, the anti-CRC effect of Akkermansia muciniphila (A. muciniphila) was validated in CRC cell lines. Results: GC-K could significantly suppress tumor growth in vivo at the dosage of 60 mg/kg without exogenous interference of gut microbiota. Moreover, dysbiosis of gut microbiota was observed in the CRC model group, which could be recovered by GC-K treatment. In particular, A. muciniphila, which could inhibit the proliferation of HCT-116, HT-29, and LOVO cells, was significantly up-regulated by GC-K. Conclusions: GC-K was verified to suppress the tumor growth of AOM/DSS-induced colitis-associated CRC through the modulation of gut microbiota, partially by up-regulation of A. muciniphila.

14.
Angew Chem Int Ed Engl ; 61(15): e202115820, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35134265

RESUMO

The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time.


Assuntos
Biomimética , Técnicas Biossensoriais , Glutationa , Nanofios , Condutividade Elétrica , Glutationa/química , Nanofios/química , Polímeros/química
15.
J Appl Biomed ; 19(2): 113-124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754259

RESUMO

Oplopanax elatus (Nakai) Nakai has a long history of use as an ethnomedicine by the people living in eastern Asia. However, its bioactive constituents and cancer chemopreventive mechanisms are largely unknown. The aim of this study was to prepare O. elatus extracts, fractions, and single compounds and to investigate the herb's antiproliferative effects on colon cancer cells and the involved mechanisms of action. Two polyyne compounds were isolated from O. elatus, falcarindiol and oplopandiol. Based on our HPLC analysis, falcarindiol and oplopandiol are major constituents in the dichloromethane (CH2Cl2) fraction. For the HCT-116 cell line, the dichloromethane fraction showed significant effects. Furthermore, the IC50 for falcarindiol and oplopandiol was 1.7 µM and 15.5 µM, respectively. In the mechanistic study, after treatment with 5 µg/ml for 48 h, dichloromethane fraction induced cancer cell apoptosis by 36.5% (p < 0.01% vs. control of 3.9%). Under the same treatment condition, dichloromethane fraction caused cell cycle arrest at the G2/M phase by 32.6% (p < 0.01% vs. control of 23.4%), supported by upregulation of key cell cycle regulator cyclin A to 21.6% (p < 0.01% vs. control of 8.6%). Similar trends were observed by using cell line HT-29. Data from this study filled the gap between phytochemical components and the cancer chemoprevention of O. elatus. The dichloromethane fraction is a bioactive fraction, and falcarindiol is identified as an active constituent. The mechanisms involved in cancer chemoprevention by O. elatus were apoptosis induction and G2/M cell cycle arrest mediated by a key cell cycle regulator cyclin A.


Assuntos
Neoplasias do Colo , Oplopanax , Apoptose , Pontos de Checagem do Ciclo Celular , Quimioprevenção , Ciclina A/farmacologia , Ciclinas/farmacologia , Di-Inos , Álcoois Graxos , Humanos , Cloreto de Metileno/farmacologia , Oplopanax/química , Regulação para Cima
16.
Angew Chem Int Ed Engl ; 60(35): 19337-19343, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34121300

RESUMO

A strategy for one-pot and large-scale synthesis of functionalized core-shell nanowires (NWs) to high-efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4-ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles-polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core-shell NWs with excellent conductivity, adjustable size, and well-designed properties. Nanoelectrodes manufactured with such core-shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells.


Assuntos
Nanotecnologia , Nanofios/química , Imagem Óptica , Compostos Organometálicos/química , Eletrodos , Humanos , Células MCF-7 , Tamanho da Partícula
17.
Cell Death Dis ; 12(5): 454, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963177

RESUMO

Radioresistance continues to be the leading cause of recurrence and metastasis in nasopharyngeal cancer. Long noncoding RNAs are emerging as regulators of DNA damage and radioresistance. LINC-PINT was originally identified as a tumor suppressor in various cancers. In this study, LINC-PINT was significantly downregulated in nasopharyngeal cancer tissues than in rhinitis tissues, and low LINC-PINT expressions showed poorer prognosis in patients who received radiotherapy. We further identified a functional role of LINC-PINT in inhibiting the malignant phenotypes and sensitizing cancer cells to irradiation in vitro and in vivo. Mechanistically, LINC-PINT was responsive to DNA damage, inhibiting DNA damage repair through ATM/ATR-Chk1/Chk2 signaling pathways. Moreover, LINC-PINT increased radiosensitivity by interacting with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and negatively regulated the expression and recruitment of DNA-PKcs. Therefore, these findings collectively support the possibility that LINC-PINT serves as an attractive target to overcome radioresistance in NPC.


Assuntos
Dano ao DNA , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Neoplasias Nasofaríngeas/radioterapia , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Humanos , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , RNA Longo não Codificante/genética
18.
Anal Chem ; 93(18): 7102-7109, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33908770

RESUMO

Effective acquirement of highly pure circulating tumor cells (CTCs) is very important for CTC-related research. However, it is a great challenge since abundant white blood cells (WBCs) are always co-collected with CTCs because of nonspecific bonding or low depletion rate of WBCs in various CTC isolation platforms. Herein, we designed a three-dimensional (3D) conductive scaffold microchip for highly effective capture and electrochemical release of CTCs with high purity. The conductive 3D scaffold was prepared by dense immobilization of gold nanotubes (Au NTs) on porous polydimethylsiloxane and was functionalized with a CTC-specific biomolecule facilitated by a Au-S bond before embedding into a microfluidic device. The spatially distributed 3D macroporous structure compelled cells to change migration from linear to chaotic and the densely covered Au NTs enhanced the topographic interaction between cells and the substrate, thus synergistically improving the CTC capture efficiency. The Au NT-coated 3D scaffold had good electrical conductivity and the Au-S bond was breakable by voltage exposure so that captured CTCs could be specifically released by electrochemical stimulation while nonspecifically bonded WBCs were not responsive to this process, facilitating recovery of CTCs with high purity. The 3D conductive scaffold microchip was successfully applied to obtain highly pure CTCs from cancer patients' blood, benefiting the downstream analysis of CTCs.


Assuntos
Células Neoplásicas Circulantes , Contagem de Células , Linhagem Celular Tumoral , Separação Celular , Condutividade Elétrica , Humanos , Dispositivos Lab-On-A-Chip , Análise em Microsséries
19.
Chin Med ; 16(1): 28, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731196

RESUMO

BACKGROUND: Ginsenoside CK (GCK) serves as the potential anti-colorectal cancer (CRC) protopanaxadiol (PPD)-type saponin, which could be mainly bio-converted to yield PPD by gut microbiota. Meanwhile, the anti-CRC effects of GCK could be altered by gut microbiota due to their different diversity in CRC patients. We aimed to investigate the bioconversion variation of GCK mediated by gut microbiota from CRC patients by comparing with healthy subjects. METHODS: Gut microbiota profiled by 16S rRNA gene sequencing were collected from healthy volunteers and CRC patients. GCK was incubated with gut microbiota in vitro. A LC-MS/MS method was validated to quantify GCK and PPD after incubation at different time points. RESULTS: The bioconversion of GCK in healthy subjects group was much faster than CRC group, as well as the yield of PPD. Moreover, significant differences of PPD concentration between healthy subjects group and CRC group could be observed at 12 h, 48 h and 72 h check points. According to 16S rRNA sequencing, the profiles of gut microbiota derived from healthy volunteers and CRC patients significantly varied, in which 12 differentially abundant taxon were found, such as Bifidobacterium, Roseburia, Bacteroides and Collinsella. Spearman's correlation analysis showed bacteria enriched in healthy subjects group were positively associated with the biotransformation of GCK, while bacteria enriched in CRC group displayed non correlation character. Among them, Roseburia which could secrete ß-glycosidase showed the strongest positive association with the bioconversion of GCK. CONCLUSIONS: The bioconversion of GCK in healthy subjects was much faster than CRC patients mediated by gut microbiota, which might alter the anti-CRC effects of GCK.

20.
Cell Death Dis ; 12(1): 69, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33431817

RESUMO

Radioresistance is the main obstacle in the clinical management of nasopharyngeal carcinoma (NPC). linc00312 is deregulated in a number of human cancers, including NPC. However, the detailed functions and underlying mechanisms of linc00312 in regulating radiosensitivity of NPC remains unknown. In this study, cox regression analysis was used to assess the association between linc00312 and NPC patients' survival after radiotherapy. Our results reveal that linc00312 is significantly down-regulated in NPC tissues and patients with higher expression of linc00312 are significantly associated with longer overall survival and better short-term radiotherapy efficacy. Overexpression of linc00312 could increase the sensitivity of NPC cells to ionizing radiation, as indicated by clonogenic survival assay, comet assay, and flow cytometry. Mechanistically, RNA pull down and RNA immunoprecipitation were performed to investigate the binding proteins of linc00312. linc00312 directly binds to DNA-PKcs, hinders the recruitment of DNA-PKcs to Ku80, and inhibits phosphorylation of AKT-DNA-PKcs axis, therefore inhibiting the DNA damage signal sensation and transduction in the NHEJ repair pathway. In addition, linc00312 impairs DNA repair and cell cycle control by suppressing MRN-ATM-CHK2 signal and ATR-CHK1 signal. In summary, we identified DNA-PKcs as the binding protein of linc00312 and revealed a novel mechanism of linc00312 in the DNA damage response, providing evidence for a potential therapeutic strategy in NPC.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Carcinoma Nasofaríngeo/genética , RNA Longo não Codificante/genética , Animais , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA