Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell Mol Life Sci ; 81(1): 262, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878186

RESUMO

Through Smad3-dependent signalings, transforming growth factor-ß (TGF-ß) suppresses the development, maturation, cytokine productions and cytolytic functions of NK cells in cancer. Silencing Smad3 remarkably restores the cytotoxicity of NK-92 against cancer in TGF-ß-rich microenvironment, but its effects on the immunoregulatory functions of NK cells remain obscure. In this study, we identified Smad3 functioned as a transcriptional repressor for CSF2 (GM-CSF) in NK cells. Therefore, disrupting Smad3 largely mitigated TGF-ß-mediated suppression on GM-CSF production by NK cells. Furthermore, silencing GM-CSF in Smad3 knockout NK cells substantially impaired their anti-lung carcinoma effects. In-depth study demonstrated that NK-derived GM-CSF strengthened T cell immune responses by stimulating dendritic cell differentiation and M1 macrophage polarization. Meanwhile, NK-derived GM-CSF promoted the survival of neutrophils, which in turn facilitated the terminal maturation of NK cells, and subsequently boosted NK-cell mediated cytotoxicity against lung carcinoma. Thus, Smad3-silenced NK-92 (NK-92-S3KD) may serve as a promising immunoadjuvant therapy with clinical translational value given its robust cytotoxicity against malignant cells and immunostimulatory functions to reinforce the therapeutic effects of other immunotherapies.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Células Matadoras Naturais , Neoplasias Pulmonares , Proteína Smad3 , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Macrófagos/metabolismo , Macrófagos/imunologia , Transdução de Sinais
2.
Front Immunol ; 15: 1361343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846956

RESUMO

Macrophages are a rich source of macrophage migration inhibitory factor (MIF). It is well established that macrophages and MIF play a pathogenic role in anti-glomerular basement membrane crescentic glomerulonephritis (anti-GBM CGN). However, whether macrophages mediate anti-GBM CGN via MIF-dependent mechanism remains unexplored, which was investigated in this study by specifically deleting MIF from macrophages in MIFf/f-lysM-cre mice. We found that compared to anti-GBM CGN induced in MIFf/f control mice, conditional ablation of MIF in macrophages significantly suppressed anti-GBM CGN by inhibiting glomerular crescent formation and reducing serum creatinine and proteinuria while improving creatine clearance. Mechanistically, selective MIF depletion in macrophages largely inhibited renal macrophage and T cell recruitment, promoted the polarization of macrophage from M1 towards M2 via the CD74/NF-κB/p38MAPK-dependent mechanism. Unexpectedly, selective depletion of macrophage MIF also significantly promoted Treg while inhibiting Th1 and Th17 immune responses. In summary, MIF produced by macrophages plays a pathogenic role in anti-GBM CGN. Targeting macrophage-derived MIF may represent a novel and promising therapeutic approach for the treatment of immune-mediated kidney diseases.


Assuntos
Doença Antimembrana Basal Glomerular , Antígenos de Diferenciação de Linfócitos B , Antígenos de Histocompatibilidade Classe II , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos , Macrófagos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Doença Antimembrana Basal Glomerular/imunologia , Doença Antimembrana Basal Glomerular/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Diferenciação de Linfócitos B/metabolismo , Modelos Animais de Doenças , NF-kappa B/metabolismo , Camundongos Knockout , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Camundongos Endogâmicos C57BL , Células Th17/imunologia , Células Th17/metabolismo , Proteinúria/imunologia , Transdução de Sinais
3.
Front Immunol ; 14: 1264447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022581

RESUMO

"Cytokine storm" is common in critically ill COVID-19 patients, however, mechanisms remain largely unknown. Here, we reported that overexpression of SARS-CoV-2 N protein in diabetic db/db mice significantly increased tubular death and the release of HMGB1, one of the damage-associated molecular patterns (DAMPs), to trigger M1 proinflammatory macrophage activation and production of IL-6, TNF-α, and MCP-1 via a Mincle-Syk/NF-κB-dependent mechanism. This was further confirmed in vitro that overexpression of SARS-CoV-2 N protein caused the release of HMGB1 from injured tubular cells under high AGE conditions, which resulted in M1 macrophage activation and production of proinflammatory cytokines via a Mincle-Syk/NF-κB-dependent mechanism. This was further evidenced by specifically silencing macrophage Mincle to block HMGB1-induced M1 macrophage activation and production of IL-6, TNF-α, and MCP-1 in vitro. Importantly, we also uncovered that treatment with quercetin largely improved SARS-CoV-2 N protein-induced AKI in db/db mice. Mechanistically, we found that quercetin treatment significantly inhibited the release of a DAMP molecule HMGB1 and inactivated M1 pro-inflammatory macrophage while promoting reparative M2 macrophage responses by suppressing Mincle-Syk/NF-κB signaling in vivo and in vitro. In conclusion, SARS-CoV-2 N protein-induced AKI in db/db mice is associated with Mincle-dependent M1 macrophage activation. Inhibition of this pathway may be a mechanism through which quercetin inhibits COVID-19-associated AKI.


Assuntos
Injúria Renal Aguda , COVID-19 , Diabetes Mellitus , Proteína HMGB1 , Camundongos , Animais , Humanos , NF-kappa B/metabolismo , Proteína HMGB1/metabolismo , SARS-CoV-2/metabolismo , Quercetina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Ativação de Macrófagos , Interleucina-6/metabolismo , COVID-19/metabolismo , Macrófagos/metabolismo , Injúria Renal Aguda/metabolismo , Diabetes Mellitus/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166755, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196860

RESUMO

Renal fibrosis (RF) is a common pathway leading to chronic kidney disease (CKD), which lacks effective treatment. While estrogen receptor beta (ERß) is known to be present in the kidney, its role in RF remains unclear. The present study aimed to investigate the role and underlying mechanism of ERß during RF progression in patients and animal models with CKD. We found that ERß was highly expressed in the proximal tubular epithelial cells (PTECs) in healthy kidneys but its expression was largely lost in patients with immunoglobin A nephropathy (IgAN) and in mice with unilateral ureter obstruction (UUO) and subtotal nephrectomy (5/6Nx). ERß deficiency markedly exacerbated, whereas ERß activation by WAY200070 and DPN attenuated RF in both UUO and 5/6Nx mouse models, suggesting a protective role of ERß in RF. In addition, ERß activation inhibited TGF-ß1/Smad3 signaling, while loss of renal ERß was associated with overactivation of the TGF-ß1/Smad3 pathway. Furthermore, deletion or pharmacological inhibition of Smad3 prevented the loss of ERß and RF. Mechanistically, activation of ERß competitively inhibited the association of Smad3 with the Smad-binding element, thereby downregulating the transcription of the fibrosis-related genes without altering Smad3 phosphorylation in vivo and in vitro. In conclusion, ERß exerts a renoprotective role in CKD by blocking the Smad3 signaling pathway. Thus, ERß may represent as a promising therapeutic agent for RF.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Camundongos , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Fibrose , Rim/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
5.
Biomed Pharmacother ; 163: 114759, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105077

RESUMO

The clinical treatment of AML is dominated by "7 + 3" therapy, but it often shows great toxicity and limited therapeutic efficacy in application. Therefore, it is urgent to develop novel therapeutic strategies to achieve safe and efficient treatment of AML. Small-molecule inhibitors have the characteristics of high specificity, low off-target toxicity and remarkable therapeutic effect, and are receiving more and more attention in tumor therapy. In this study, we screened a library of 1972 FDA-approved small molecular compounds for those that induced the inflammatory death of AML cells, among which the TLR8 agonist Motolimod (MTL) showed stronger anti-AML activity in the animal model but slight affection on normal lymphocytes in control mice. In terms of mechanism, cellular experiments in AML cell lines proved that TLR8 and LKB1/AMPK are the key distinct mechanisms for MTL triggered caspase-3-dependent cell death and the expression of a large number of inflammatory factors. In conclusion, our findings identified the immunoactivator MTL as a single agent exerting significant anti-AML activity in vitro and in vivo, with strong potential for clinical translation.


Assuntos
Leucemia Mieloide Aguda , Receptor 8 Toll-Like , Animais , Camundongos , Leucemia Mieloide Aguda/metabolismo , Benzazepinas/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Linhagem Celular Tumoral
6.
Nat Commun ; 14(1): 1794, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002229

RESUMO

Neutrophils are dynamic with their phenotype and function shaped by the microenvironment, such as the N1 antitumor and N2 pro-tumor states within the tumor microenvironment (TME), but its regulation remains undefined. Here we examine TGF-ß1/Smad3 signaling in tumor-associated neutrophils (TANs) in non-small cell lung carcinoma (NSCLC) patients. Smad3 activation in N2 TANs is negatively correlate with the N1 population and patient survival. In experimental lung carcinoma, TANs switch from a predominant N2 state in wild-type mice to an N1 state in Smad3-KO mice which associate with enhanced neutrophil infiltration and tumor regression. Neutrophil depletion abrogates the N1 anticancer phenotype in Smad3-KO mice, while adoptive transfer of Smad3-KO neutrophils reproduces this protective effect in wild-type mice. Single-cell analysis uncovers a TAN subset showing a mature N1 phenotype in Smad3-KO TME, whereas wild-type TANs mainly retain an immature N2 state due to Smad3. Mechanistically, TME-induced Smad3 target genes related to cell fate determination to preserve the N2 state of TAN. Importantly, genetic deletion and pharmaceutical inhibition of Smad3 enhance the anticancer capacity of neutrophils against NSCLC via promoting their N1 maturation. Thus, our work suggests that Smad3 signaling in neutrophils may represent a therapeutic target for cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neutrófilos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microambiente Tumoral
7.
Int J Biol Sci ; 19(2): 521-536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632461

RESUMO

Neuropeptide Y (NPY) is produced by the nerve system and may contribute to the progression of CKD. The present study found the new protective role for NPY in AKI in both patients and animal models. Interestingly, NPY was constitutively expressed in blood and resident kidney macrophages by co-expressing NPY and CD68+ markers, which was lost in patients and mice with AKI-induced by cisplatin. Unexpectedly, NPY was renoprotective in AKI as mice lacking NPY developed worse renal necroinflammation and renal dysfunction in cisplatin and ischemic-induced AKI. Importantly, NPY was also a therapeutic agent for AKI because treatment with exogenous NPY dose-dependently inhibited cisplatin-induced AKI. Mechanistically, NPY protected kidney from AKI by inactivating M1 macrophages via the Y1R-NF-κB-Mincle-dependent mechanism as deleting or silencing NPY decreased Y1R but increased NF-κB-Mincle-mediated M1macrophage activation and renal necroinflammation, which were reversed by addition of NPY or by silencing Mincle but promoted by blocking Y1R with BIBP 3226. Thus, NPY is renoprotective and may be a novel therapeutic agent for AKI. NPY may act via Y1R to protect kidney from AKI by blocking NF-κB-Mincle-mediated M1 macrophage activation and renal necroinflammation.


Assuntos
Injúria Renal Aguda , NF-kappa B , Neuropeptídeo Y , Receptores de Neuropeptídeo Y , Animais , Camundongos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Cisplatino/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/farmacologia , Neuropeptídeo Y/uso terapêutico , Receptores de Neuropeptídeo Y/metabolismo
8.
Sci Adv ; 8(40): eabn5535, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36206343

RESUMO

Tumor innervation is a common phenomenon with unknown mechanism. Here, we discovered a direct mechanism of tumor-associated macrophage (TAM) for promoting de novo neurogenesis via a subset showing neuronal phenotypes and pain receptor expression associated with cancer-driven nocifensive behaviors. This subset is rich in lung adenocarcinoma associated with poorer prognosis. By elucidating the transcriptome dynamics of TAM with single-cell resolution, we discovered a phenomenon "macrophage to neuron-like cell transition" (MNT) for directly promoting tumoral neurogenesis, evidenced by macrophage depletion and fate-mapping study in lung carcinoma models. Encouragingly, we detected neuronal phenotypes and activities of the bone marrow-derived MNT cells (MNTs) in vitro. Adoptive transfer of MNTs into NOD/SCID mice markedly enhanced their cancer-associated nocifensive behaviors. We identified macrophage-specific Smad3 as a pivotal regulator for promoting MNT at the genomic level; its disruption effectively blocked the tumor innervation and cancer-dependent nocifensive behaviors in vivo. Thus, MNT may represent a precision therapeutic target for cancer pain.


Assuntos
Dor do Câncer , Neoplasias Pulmonares , Animais , Dor do Câncer/metabolismo , Dor do Câncer/patologia , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neurônios , Análise de Sequência de RNA
9.
Oxid Med Cell Longev ; 2022: 6248779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092156

RESUMO

Background: Inflammation plays important roles during myocardial infarction (MI). Macrophage polarization is a major factor that drives the inflammatory process. Our previous study found that RNA polymerase II subunit 5-mediating protein (RMP) knockout in cardiomyocytes caused heart failure by impairing mitochondrial structure and function. However, whether macrophage RMP plays a role in MI has not been investigated. Methods: Macrophage RMP-knockout in combination with a mouse model of MI was used to study the function of macrophage RMP in MI. Next, we modified bone marrow-derived macrophages (BMDMs) by plasmid transfection, and the BMDMs were administered to LysM-Cre/DTR mice by tail vein injection. Immunoblotting and immunofluorescence were used to detect macrophage polarization, fibrosis, angiogenesis, and the p38 signaling pathway in each group. Results: Macrophage RMP deficiency aggravates cardiac dysfunction, promotes M1 polarization, and inhibits angiogenesis after MI. However, RMP overexpression in macrophages promotes M2 polarization and angiogenesis after MI. Mechanistically, we found that RMP regulates macrophage polarization through the heat shock protein 90- (HSP90-) p38 signaling pathway. Conclusions: Macrophage RMP plays a significant role in MI, likely by regulating macrophage polarization via the HSP90-p38 signaling pathway.


Assuntos
Ativação de Macrófagos , Infarto do Miocárdio , Animais , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
10.
Biomaterials ; 288: 121730, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35995622

RESUMO

Transforming growth factor ß (TGF-ß) is a well-known key mediator for the progression and metastasis of lung carcinoma. However, cost-effective anti-TGF-ß therapeutics for lung cancer remain to be explored. Specifically, the low efficacy in drug delivery greatly limits the clinical application of small molecular inhibitors of TGF-ß. In the present study, specific inhibitor of Smad3 (SIS3) is developed into a self-carried nanodrug (SCND-SIS3) using the reprecipitation method, which largely improves its solubility and bioavailability while reduces its nephrotoxicity. Compared to unmodified-SIS3, SCND-SIS3 demonstrates better anti-cancer effects through inducing tumor cell apoptosis, inhibiting angiogenesis, and boosting NK cell-mediated immune responses in syngeneic Lewis Lung Cancer (LLC) mouse model. Better still, it could achieve comparable anti-cancer effect with just one-fifth the dose of unmodified-SIS3. Mechanistically, RNA-sequencing analysis and cytokine array results unveil a TGF-ß/Smad3-dependent immunoregulatory landscape in NK cells. In particular, SCND-SIS3 promotes NK cell cytotoxicity by ameliorating Smad3-mediated transcriptional inhibition of Ndrg1. Furthermore, improved NK cell cytotoxicity by SCND-SIS3 is associated with higher expression of activation receptor Nkp46, and suppressed levels of Trib3 and TSP1 as compared with unmodified-SIS3. Taken together, SCND-SIS3 possesses superior anti-cancer effects with enhanced bioavailability and biocompatibility, therefore representing as a novel therapeutic strategy for lung carcinoma with promising clinical potential.


Assuntos
Carcinoma , Neoplasias Pulmonares , Nanopartículas , Animais , Carcinoma/tratamento farmacológico , Linhagem Celular Tumoral , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Nanopartículas/uso terapêutico , Piridinas/farmacologia , Pirróis/uso terapêutico , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
Mol Ther ; 30(9): 3017-3033, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35791881

RESUMO

Clopidogrel, a P2Y12 inhibitor, is a novel anti-fibrosis agent for chronic kidney disease (CKD), but its mechanisms remain unclear, which we investigated by silencing P2Y12 or treating unilateral ureteral obstruction (UUO) in LysM-Cre/Rosa Tomato mice with clopidogrel in vivo and in vitro. We found that P2Y12 was significantly increased and correlated with progressive renal fibrosis in CKD patients and UUO mice. Phenotypically, up to 82% of P2Y12-expressing cells within the fibrosing kidney were of macrophage origin, identified by co-expressing CD68/F4/80 antigens or a macrophage-lineage-tracing marker Tomato. Unexpectedly, more than 90% of P2Y12-expressing macrophages were undergoing macrophage-to-myofibroblast transition (MMT) by co-expressing alpha smooth muscle actin (α-SMA), which was also confirmed by single-cell RNA sequencing. Functionally, clopidogrel improved the decline rate of the estimated glomerular filtration rate (eGFR) in patients with CKD and significantly inhibited renal fibrosis in UUO mice. Mechanistically, P2Y12 expression was induced by transforming growth factor ß1 (TGF-ß1) and promoted MMT via the Smad3-dependent mechanism. Thus, silencing or pharmacological inhibition of P2Y12 was capable of inhibiting TGF-ß/Smad3-mediated MMT and progressive renal fibrosis in vivo and in vitro. In conclusion, P2Y12 is highly expressed by macrophages in fibrosing kidneys and mediates renal fibrosis by promoting MMT via TGF-ß/Smad3 signaling. Thus, P2Y12 inhibitor maybe a novel and effective anti-fibrosis agent for CKD.


Assuntos
Nefropatias , Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Clopidogrel/metabolismo , Clopidogrel/farmacologia , Clopidogrel/uso terapêutico , Fibrose , Rim , Nefropatias/etiologia , Nefropatias/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/genética
12.
Adv Sci (Weinh) ; 9(1): e2101235, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34791825

RESUMO

Cancer-associated fibroblasts (CAFs) are important in tumor microenvironment (TME) driven cancer progression. However, CAFs are heterogeneous and still largely underdefined, better understanding their origins will identify new therapeutic strategies for cancer. Here, the authors discovered a new role of macrophage-myofibroblast transition (MMT) in cancer for de novo generating protumoral CAFs by resolving the transcriptome dynamics of tumor-associated macrophages (TAM) with single-cell resolution. MMT cells (MMTs) are observed in non-small-cell lung carcinoma (NSCLC) associated with CAF abundance and patient mortality. By fate-mapping study, RNA velocity, and pseudotime analysis, existence of novel macrophage-lineage-derived CAF subset in the TME of Lewis lung carcinoma (LLC) model is confirmed, which is directly transited via MMT from M2-TAM in vivo and bone-marrow-derived macrophages (BMDM) in vitro. Adoptive transfer of BMDM-derived MMTs markedly promote CAF formation in LLC-bearing mice. Mechanistically, a Smad3-centric regulatory network is upregulated in the MMTs of NSCLC, where chromatin immunoprecipitation sequencing(ChIP-seq) detects a significant enrichment of Smad3 binding on fibroblast differentiation genes in the macrophage-lineage cells in LLC-tumor. More importantly, macrophage-specific deletion and pharmaceutical inhibition of Smad3 effectively block MMT, therefore, suppressing the CAF formation and cancer progression in vivo. Thus, MMT may represent a novel therapeutic target of CAF for cancer immunotherapy.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Proteína Smad3/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Miofibroblastos/patologia , Transdução de Sinais/genética , Proteína Smad3/genética , Microambiente Tumoral/genética
13.
Front Immunol ; 12: 693608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367152

RESUMO

Allograft rejection is a common immunological feature in renal transplantation and is associated with reduced graft survival. A mouse renal allograft rejection model was induced and single-cell RNA sequencing (scRNA-seq) data of CD45+ leukocytes in kidney allografts on days 7 (D7) and 15 (D15) after operation was analyzed to reveal a full immunological profiling. We identified 20 immune cell types among 10,921 leukocytes. Macrophages and CD8+ T cells constituted the main populations on both timepoints. In the process from acute rejection (AR) towards chronic rejection (CR), the proportion of proliferating and naïve CD8+ T cells dropped significantly. Both B cells and neutrophils decreased by about 3 folds. On the contrary, the proportion of macrophages and dendritic cells (DCs) increased significantly, especially by about a 4.5-fold increase in Ly6cloMrc1+ macrophages and 2.6 folds increase in Ly6cloEar2+ macrophages. Moreover, myeloid cells harbored the richest ligand and receptor (LR) pairs with other cells, particularly for chemokine ligands such as Cxcl9, Cxcl10, Cxcl16 and Yars. However, macrophages with weak response to interferon gamma (IFNg) contributed to rejection chronicization. To conclude, reduction in CD8 T cells, B cells and neutrophils while increasing in Ly6cloMrc1+ macrophages and Ly6cloEar2+ macrophages, may contribute significantly to the progress from AR towards CR.


Assuntos
Perfilação da Expressão Gênica , Rejeição de Enxerto/genética , Transplante de Rim/efeitos adversos , Leucócitos/metabolismo , Macrófagos/metabolismo , RNA-Seq , Análise de Célula Única , Transcriptoma , Doença Aguda , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Comunicação Celular , Doença Crônica , Modelos Animais de Doenças , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Leucócitos/imunologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Transdução de Sinais , Fatores de Tempo
14.
Int J Biol Sci ; 17(6): 1497-1506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907513

RESUMO

Increasing clinical evidence shows that acute kidney injury (AKI) is a common and severe complication in critically ill COVID-19 patients. The older age, the severity of COVID-19 infection, the ethnicity, and the history of smoking, diabetes, hypertension, and cardiovascular disease are the risk factor for AKI in COVID-19 patients. Of them, inflammation may be a key player in the pathogenesis of AKI in patients with COVID-19. It is highly possible that SARS-COV-2 infection may trigger the activation of multiple inflammatory pathways including angiotensin II, cytokine storm such as interleukin-6 (IL-6), C-reactive protein (CRP), TGF-ß signaling, complement activation, and lung-kidney crosstalk to cause AKI. Thus, treatments by targeting these inflammatory molecules and pathways with a monoclonal antibody against IL-6 (Tocilizumab), C3 inhibitor AMY-101, anti-C5 antibody, anti-TGF-ß OT-101, and the use of CRRT in critically ill patients may represent as novel and specific therapies for AKI in COVID-19 patients.


Assuntos
Injúria Renal Aguda/etiologia , COVID-19/complicações , Inflamação/etiologia , SARS-CoV-2/isolamento & purificação , Estresse Fisiológico , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/terapia , COVID-19/virologia , Ativação do Complemento , Síndrome da Liberação de Citocina , Complicações do Diabetes/metabolismo , Humanos , Terapia de Substituição Renal
15.
Mol Ther Oncolytics ; 20: 277-289, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33614911

RESUMO

Transforming growth factor ß (TGF-ß) has been shown to promote tumor invasion and metastasis by activating the matrix metalloproteinases (MMPs); however, signaling mechanisms remain controversial and therapies targeting MMPs are still suboptimal. In the present study, we found that combined therapy with Asiatic acid (AA), a Smad7 agonist, and Naringenin (NG), a Smad3 inhibitor, effectively retrieved the balance between Smad3 and Smad7 signaling in the TGF-ß-rich tumor microenvironment and thus significantly suppressed tumor invasion and metastasis in mouse models of melanoma and lung carcinoma. Mechanistically, we unraveled that Smad3 acted as a transcriptional activator of MMP2 and as a transcriptional suppressor of tissue inhibitors of metalloproteinase-2 (TIMP2) via binding to 5' UTR of MMP2 and 3' UTR of TIMP2, respectively. Treatment with NG inhibited Smad3-mediated MMP2 transcription while increasing TIMP, whereas treatment with AA enhanced Smad7 to suppress TGF-ß/Smad3 signaling, as well as the activation of MMP2 by targeting the nuclear factor-κB (NF-κB)-membrane-type-1 MMP (MT1-MMP) axis. Therefore, the combination of AA and NG additively suppressed invasion and metastasis of melanoma and lung carcinoma by targeting TGF-ß/Smad-dependent MMP2 transcription, post-translational activation, and function.

16.
Clin Sci (Lond) ; 135(3): 429-446, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458750

RESUMO

Kallistatin is a multiple functional serine protease inhibitor that protects against vascular injury, organ damage and tumor progression. Kallistatin treatment reduces inflammation and fibrosis in the progression of chronic kidney disease (CKD), but the molecular mechanisms underlying this protective process and whether kallistatin plays an endogenous role are incompletely understood. In the present study, we observed that renal kallistatin levels were significantly lower in patients with CKD. It was also positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with serum creatinine level. Unilateral ureteral obstruction (UUO) in animals also led to down-regulation of kallistatin protein in the kidney, and depletion of endogenous kallistatin by antibody injection resulted in aggravated renal fibrosis, which was accompanied by enhanced Wnt/ß-catenin activation. Conversely, overexpression of kallistatin attenuated renal inflammation, interstitial fibroblast activation and tubular injury in UUO mice. The protective effect of kallistatin was due to the suppression of TGF-ß and ß-catenin signaling pathways and subsequent inhibition of epithelial-to-mesenchymal transition (EMT) in cultured tubular cells. In addition, kallistatin could inhibit TGF-ß-mediated fibroblast activation via modulation of Wnt4/ß-catenin signaling pathway. Therefore, endogenous kallistatin protects against renal fibrosis by modulating Wnt/ß-catenin-mediated EMT and fibroblast activation. Down-regulation of kallistatin in the progression of renal fibrosis underlies its potential as a valuable clinical biomarker and therapeutic target in CKD.


Assuntos
Insuficiência Renal Crônica/patologia , Serpinas/metabolismo , Obstrução Ureteral/patologia , Via de Sinalização Wnt , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Fibrose/patologia , Humanos , Rim/patologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/metabolismo
17.
Autophagy ; 17(9): 2325-2344, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33043774

RESUMO

Macroautophagy/autophagy dysregulation has been noted in diabetic nephropathy; however, the regulatory mechanisms controlling this process remain unclear. In this study, we showed that SMAD3 (SMAD family member 3), the key effector of TGFB (transforming growth factor beta)-SMAD signaling, induces lysosome depletion via the inhibition of TFEB-dependent lysosome biogenesis. The pharmacological inhibition or genetic deletion of SMAD3 restored lysosome biogenesis activity by alleviating the suppression of TFEB, thereby protecting lysosomes from depletion and improving autophagic flux in renal tubular epithelial cells in diabetic nephropathy. Mechanistically, we found that SMAD3 directly binds to the 3'-UTR of TFEB and inhibits its transcription. Silencing TFEB suppressed lysosome biogenesis and resulted in a loss of the protective effects of SMAD3 inactivation on lysosome depletion under diabetic conditions. In conclusion, SMAD3 promotes lysosome depletion via the inhibition of TFEB-dependent lysosome biogenesis; this may be an important mechanism underlying autophagy dysregulation in the progression of diabetic nephropathy.Abbreviations: AGEs: advanced glycation end products; ATP6V1H: ATPase H+ transporting V1 subunit H; CTSB: cathepsin B; ChIP: chromatin immunoprecipitation; Co-BSA: control bovine serum albumin; DN: diabetic nephropathy; ELISA: enzyme-linked immunosorbent assay; FN1: fibronectin 1; HAVCR1/TIM1/KIM-1: hepatitis A virus cellular receptor 1; LAMP1: lysosomal associated membrane protein 1; LMP: lysosome membrane permeabilization; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NC: negative control; SIS3: specific inhibitor of SMAD3; SMAD3: SMAD family member 3; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TECs: tubular epithelial cells; TFEB: transcription factor EB; TGFB1: transforming growth factor beta 1; TGFBR1: transforming growth factor beta receptor 1; UTR: untranslated region; VPS11: VPS11 core subunit of CORVET and HOPS complexes.


Assuntos
Autofagia , Diabetes Mellitus , Nefropatias Diabéticas , Proteína Smad3 , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diabetes Mellitus/metabolismo , Células Epiteliais/metabolismo , Humanos , Lisossomos/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo
18.
Mol Ther ; 29(1): 365-375, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32956626

RESUMO

Diabetic nephropathy (DN) is a major cause of end-stage renal disease, but treatment remains ineffective. C-reactive protein (CRP) is pathogenic in DN, which significantly correlated with dipeptidyl peptidase-4 (DPP4) expression in diabetic patients with unknown reason. Here, using our unique CRPtg-db/db mice, we observed human CRP markedly induced renal DPP4 associated with enhanced kidney injury compared with db/db mice. Interestingly, linagliptin, a US Food and Drug Administration (FDA)-approved specific DPP4 inhibitor, effectively blocked this CRP-driven DN in the CRPtg-db/db mice. Mechanistically, CRP evoked DPP4 in cultured renal tubular epithelial cells, where CD32b/nuclear factor κB (NF-κB) signaling markedly enriched p65 binding on the DPP4 promoter region to increase its transcription. Unexpectedly, we further discovered that CRP triggers dimerization of DPP4 with CD32b at protein level, forming a novel DPP4/CD32b/NF-κB signaling circuit for promoting CRP-mediated DN. More importantly, linagliptin effectively blocked the circuit, thereby inhibiting the CRP/CD32b/NF-κB-driven renal inflammation and fibrosis. Thus, DPP4 may represent a precise druggable target for CRP-driven DN.


Assuntos
Proteína C-Reativa/metabolismo , Nefropatias Diabéticas/metabolismo , Dipeptidil Peptidase 4/metabolismo , NF-kappa B/metabolismo , Receptores de IgG/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Diabetes Mellitus Experimental , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Camundongos
19.
J Cell Mol Med ; 24(22): 13093-13103, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32971570

RESUMO

Angiotensin-converting enzyme-2 (ACE2) and Mas receptor are the major components of the ACE2/Ang 1-7/Mas axis and have been shown to play a protective role in hypertension and hypertensive nephropathy individually. However, the effects of dual deficiency of ACE2 and Mas (ACE2/Mas) on Ang II-induced hypertensive nephropathy remain unexplored, which was investigated in this study in a mouse model of hypertension induced in either ACE2 knockout (KO) or Mas KO mice and in double ACE2/Mas KO mice by subcutaneously chronic infusion of Ang II. Compared with wild-type (WT) animals, mice lacking either ACE2 or Mas significantly increased blood pressure over 7-28 days following a chronic Ang II infusion (P < .001), which was further exacerbated in double ACE2/Mas KO mice (P < .001). Furthermore, compared to a single ACE2 or Mas KO mice, mice lacking ACE2/Mas developed more severe renal injury including higher levels of serum creatinine and a further reduction in creatinine clearance, and progressive renal inflammation and fibrosis. Mechanistically, worsen hypertensive nephropathy in double ACE2/Mas KO mice was associated with markedly enhanced AT1-ERK1/2-Smad3 and NF-κB signalling, thereby promoting renal fibrosis and renal inflammation in the hypertensive kidney. In conclusion, ACE2 and Mas play an additive protective role in Ang II-induced hypertension and hypertensive nephropathy. Thus, restoring the ACE2/Ang1-7/Mas axis may represent a novel therapy for hypertension and hypertensive nephropathy.


Assuntos
Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Hipertensão Renal/metabolismo , Nefrite/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Pressão Sanguínea , Fibrose , Deleção de Genes , Hipertensão Renal/genética , Inflamação , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite/genética , Proteinúria/genética , Proto-Oncogene Mas , Transdução de Sinais
20.
Mol Ther Methods Clin Dev ; 18: 791-802, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32953930

RESUMO

Transforming growth factor ß (TGF-ß)/Smad3 signaling plays a central role in chronic heart disease. Here, we report that targeting Smad3 with a Smad3 inhibitor SIS3 in an established mouse model of hypertension significantly improved cardiac dysfunctions by preserving the left ventricle (LV) ejection fraction (LVEF) and LV fractional shortening (LVFS), while reducing the LV mass. In addition, SIS3 treatment also halted the progression of myocardial fibrosis by blocking α-smooth muscle actin-positive (α-SMA+) myofibroblasts and collagen matrix accumulation, and inhibited cardiac inflammation by suppressing interleukin (IL)-1ß, tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP1), intercellular cell adhesion molecule-1 (ICAM1) expression, and infiltration of CD3+ T cells and F4/80+ macrophages. Interestingly, treatment with SIS3 did not alter levels of high blood pressure, revealing a blood pressure-independent cardioprotective effect of SIS3. Mechanistically, treatment with SIS3 not only directly inactivated TGF-ß/Smad3 signaling but also protected cardiac Smad7 from Smurf2-mediated proteasomal ubiquitin degradation. Because Smad7 functions as an inhibitor for both TGF-ß/Smad and nuclear factor κB (NF-κB) signaling, increased cardiac Smad7 could be another mechanism through which SIS3 treatment blocked Smad3-mediated myocardial fibrosis and NF-κB-driven cardiac inflammation. In conclusion, SIS3 is a therapeutic agent for hypertensive heart disease. Results from this study demonstrate that targeting Smad3 signaling with SIS3 may be a novel and effective therapy for chronic heart disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA