Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
2.
Cell Metab ; 36(5): 984-999.e8, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38642552

RESUMO

The relevance of biopterin metabolism in resistance to immune checkpoint blockade (ICB) therapy remains unknown. We demonstrate that the deficiency of quinoid dihydropteridine reductase (QDPR), a critical enzyme regulating biopterin metabolism, causes metabolite dihydrobiopterin (BH2) accumulation and decreases the ratio of tetrahydrobiopterin (BH4) to BH2 in pancreatic ductal adenocarcinomas (PDACs). The reduced BH4/BH2 ratio leads to an increase in reactive oxygen species (ROS) generation and a decrease in the distribution of H3K27me3 at CXCL1 promoter. Consequently, myeloid-derived suppressor cells are recruited to tumor microenvironment via CXCR2 causing resistance to ICB therapy. We discovered that BH4 supplementation is capable to restore the BH4/BH2 ratio, enhance anti-tumor immunity, and overcome ICB resistance in QDPR-deficient PDACs. Tumors with lower QDPR expression show decreased responsiveness to ICB therapy. These findings offer a novel strategy for selecting patient and combining therapies to improve the effectiveness of ICB therapy in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Humanos , Animais , Camundongos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos Endogâmicos C57BL , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Feminino , Masculino , Espécies Reativas de Oxigênio/metabolismo
3.
Acad Radiol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508935

RESUMO

RATIONALE AND OBJECTIVES: Transarterial chemoembolization (TACE) plus molecular targeted therapies has emerged as the main approach for treating hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT). A robust model for outcome prediction and risk stratification of recommended TACE plus molecular targeted therapies candidates is lacking. We aimed to develop an easy-to-use tool specifically for these patients. METHODS: A retrospective analysis was conducted on 384 patients with HCC and PVTT who underwent TACE plus molecular targeted therapies at 16 different institutions. We developed and validated a new prognostic score which called ABPS score. Additionally, an external validation was performed on data from 200 patients enrolled in a prospective cohort study. RESULTS: The ABPS score (ranging from 0 to 3 scores), which involves only Albumin-bilirubin (ALBI, grade 1: 0 score; grade 2: 1 score), PVTT(I-II type: 0 score; III-IV type: 1 score), and systemic-immune inflammation index (SII,<550 × 1012: 0 score; ≥550 × 1012: 1 score). Patients were categorized into three risk groups based on their ABPS score: ABPS-A, B, and C (scored 0, 1-2, and 3, respectively). The concordance index (C-index) of the ABPS scoring system was calculated to be 0.802, significantly outperforming the HAP score (0.758), 6-12 (0.712), Up to 7 (0.683), and ALBI (0.595) scoring systems (all P < 0.05). These research findings were further validated in the external validation cohorts. CONCLUSION: The ABPS score demonstrated a strong association with survival outcomes and radiological response in patients undergoing TACE plus molecular targeted therapy for HCC with PVTT. The ABPS scoring system could serve as a valuable tool to guide treatment selection for these patients.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38275059

RESUMO

BACKGROUND: Postmenopausal osteoporosis (PMOP) greatly increases the risk of bone fracture in postmenopausal women, seriously affects the quality of life of patients, and is an important global public health problem. Persistent chronic systemic inflammation may be involved in the change process of PMOP, and many cytokines, such as TNF-alpha and Interleukin-6, play an important role in the inflammatory response. Therefore, This study takes commonly representative inflammatory factors as indicators to better determine their role in PMOP patients by means of databases from multiple studies for use in Meta-analysis. METHOD: Systematic review of studies on the relationship between PMOP and markers of inflammation: interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α). Each effect size was expressed with a 95% confidence interval (CI), and I2 quantified the heterogeneity. The final results were aggregated and evaluated using random or fixed effects models. RESULTS: Twenty-one original studies were identified. There were twenty studies involving IL-6 and eleven involving TNF-α. Overall, The levels of IL-6[MD=23.93, 95%CI (19.65, 28.21)] and TNF-α[MD=2.9, 95%CI (2.37, 3.44)] were increased in PMOP patients compared with postmenopausal women without osteoporosis; The levels of IL-6[MD=42.4, 95%CI (38.62, 46.19)] and TNF-α[MD=0.40, 95%CI (0.36, 0.44)] were significantly higher than those of premenopausal healthy women. CONCLUSIONS: The levels of inflammatory cytokines IL-6 and TNF-α were significantly increased in PMOP patients compared with controls, suggesting that persistent chronic inflammatory reaction exists in PMOP patients, which may be an important cause of aggravated osteoporosis in postmenopausal women. Therefore, the level of IL-6 and TNF-α indexes may be of great significance for the early prevention, diagnosis, treatment and prognosis assessment of PMOP.

5.
Gut ; 73(3): 470-484, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38050068

RESUMO

OBJECTIVE: Metastasis is the major cause of cancer death. However, what types of heterogenous cancer cells in primary tumour and how they metastasise to the target organs remain largely undiscovered. DESIGN: We performed single-cell RNA sequencing and spatial transcriptomic analysis in primary colorectal cancer (CRC) and metastases in the liver (lCRC) or ovary (oCRC). We also conducted immunofluorescence staining and functional experiments to examine the mechanism. RESULTS: Integrative analyses of epithelial cells reveal a stem-like cell cluster with high protein tyrosine phosphatase receptor type O (PTPRO) and achaete scute-like 2 (ASCL2) expression as the metastatic culprit. This cell cluster comprising distinct subpopulations shows distinct liver or ovary metastatic preference. Population 1 (P1) cells with high delta-like ligand 4 (DLL4) and MAF bZIP transcription factor A (MAFA) expression are enriched in primary CRC and oCRC, thus may be associated with ovarian metastasis. P3 cells having a similar expression pattern as cholangiocytes are found mainly in primary CRC and lCRC, presuming to be likely the culprits that specifically metastasise to the liver. Stem-like cells interacted with cancer-associated fibroblasts and endothelial cells via the DLL4-NOTCH signalling pathway to metastasise from primary CRC to the ovary. In the oCRC microenvironment, myofibroblasts provide cancer cells with glutamine and perform a metabolic reprogramming, which may be essential for cancer cells to localise and develop in the ovary. CONCLUSION: We uncover a mechanism for organ-specific CRC metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Feminino , Humanos , Neoplasias Colorretais/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Neoplasias Hepáticas/patologia , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica/genética , Microambiente Tumoral/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
6.
Nat Genet ; 55(12): 2224-2234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957340

RESUMO

The biological functions of noncoding RNA N6-methyladenosine (m6A) modification remain poorly understood. In the present study, we depict the landscape of super-enhancer RNA (seRNA) m6A modification in pancreatic ductal adenocarcinoma (PDAC) and reveal a regulatory axis of m6A seRNA, H3K4me3 modification, chromatin accessibility and oncogene transcription. We demonstrate the cofilin family protein CFL1, overexpressed in PDAC, as a METTL3 cofactor that helps seRNA m6A methylation formation. The increased seRNA m6As are recognized by the reader YTHDC2, which recruits H3K4 methyltransferase MLL1 to promote H3K4me3 modification cotranscriptionally. Super-enhancers with a high level of H3K4me3 augment chromatin accessibility and facilitate oncogene transcription. Collectively, these results shed light on a CFL1-METTL3-seRNA m6A-YTHDC2/MLL1 axis that plays a role in the epigenetic regulation of local chromatin state and gene expression, which strengthens our knowledge about the functions of super-enhancers and their transcripts.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Cromatina/genética , RNA , Epigênese Genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Oncogenes/genética , Metiltransferases/genética
7.
Nat Commun ; 14(1): 6334, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816727

RESUMO

N6-methyladenosine (m6A) modification of gene transcripts plays critical roles in cancer. Here we report transcriptomic m6A profiling in 98 tissue samples from 65 individuals with pancreatic ductal adenocarcinoma (PDAC). We identify 17,996 m6A peaks with 195 hyper-methylated and 93 hypo-methylated in PDAC compared with adjacent normal tissues. The differential m6A modifications distinguish two PDAC subtypes with different prognosis outcomes. The formation of the two subtypes is driven by a newly identified m6A regulator CSTF2 that co-transcriptionally regulates m6A installation through slowing the RNA Pol II elongation rate during gene transcription. We find that most of the CSTF2-regulated m6As have positive effects on the RNA level of host genes, and CSTF2-regulated m6As are mainly recognized by IGF2BP2, an m6A reader that stabilizes mRNAs. These results provide a promising PDAC subtyping strategy and potential therapeutic targets for precision medicine of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , RNA Mensageiro/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética , Neoplasias Pancreáticas
8.
Cell Death Differ ; 30(10): 2213-2230, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37726400

RESUMO

C-Myc overexpression contributes to multiple hallmarks of human cancer but directly targeting c-Myc is challenging. Identification of key factors involved in c-Myc dysregulation is of great significance to develop potential indirect targets for c-Myc. Herein, a collection of long non-coding RNAs (lncRNAs) interacted with c-Myc is detected in pancreatic ductal adenocarcinoma (PDAC) cells. Among them, lncRNA BCAN-AS1 is identified as the one with highest c-Myc binding enrichment. BCAN-AS1 was abnormally elevated in PDAC tumors and high BCAN-AS1 level was significantly associated with poor prognosis. Mechanistically, Smad nuclear-interacting protein 1 (SNIP1) was characterized as a new N6-methyladenosine (m6A) mediator binding to BCAN-AS1 via recognizing its m6A modification. m6A-modified BCAN-AS1 acts as a scaffold to facilitate the formation of a ternary complex together with c-Myc and SNIP1, thereby blocking S phase kinase-associated protein 2 (SKP2)-mediated c-Myc ubiquitination and degradation. Biologically, BCAN-AS1 promotes malignant phenotypes of PDAC in vitro and in vivo. Treatment of metastasis xenograft and patient-derived xenograft mouse models with in vivo-optimized antisense oligonucleotide of BCAN-AS1 effectively represses tumor growth and metastasis. These findings shed light on the pro-tumorigenic role of BCAN-AS1 and provide an innovant insight into c-Myc-interacted lncRNA in PDAC.

9.
Cells ; 12(10)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37408203

RESUMO

Alzheimer's disease (AD), which was first identified more than a century ago, has become a pandemic that exacts enormous social burden and economic tolls as no measure of combating devastated AD is currently available. Growing etiopathological, genetic, and biochemical data indicate that AD is a heterogeneous, polygenic, multifactorial, and complex disease. However, its exact etiopathology remains to be determined. Numerous experimental data show that cerebral iron and copper dyshomeostasis contribute to Aß amyloidosis and tauopathy, two neuropathological hallmarks of AD. Moreover, increasing experimental evidence suggests ferroptosis, an iron-dependent and nonapoptotic form of cell death, may be involved in the neurodegenerative process in the AD brain. Thus, the anti-ferroptosis approach may be an efficacious therapeutic strategy for AD patients. Furthermore, it remains to be further determined whether cuproptosis, a copper-dependent and distinct form of regulated cell death, also plays a contributing role in AD neurodegeneration. We hope this concise review of recent experimental studies of oxidative stress-mediated ferroptosis and cuproptosis in AD may spur further investigations on this timely and essential line of research.


Assuntos
Doença de Alzheimer , Apoptose , Tauopatias , Humanos , Doença de Alzheimer/metabolismo , Cobre/metabolismo , Ferro/metabolismo , Estresse Oxidativo
10.
Cancer Res ; 83(18): 3059-3076, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37326469

RESUMO

The therapeutic options for treating pancreatic ductal adenocarcinoma (PDAC) are limited, and resistance to gemcitabine, a cornerstone of PDAC chemotherapy regimens, remains a major challenge. N6-methyladenosine (m6A) is a prevalent modification in mRNA that has been linked to diverse biological processes in human diseases. Herein, by characterizing the global m6A profile in a panel of gemcitabine-sensitive and gemcitabine-insensitive PDAC cells, we identified a key role for elevated m6A modification of the master G0-G1 regulator FZR1 in regulating gemcitabine sensitivity. Targeting FZR1 m6A modification augmented the response to gemcitabine treatment in gemcitabine-resistant PDAC cells both in vitro and in vivo. Mechanistically, GEMIN5 was identified as a novel m6A mediator that specifically bound to m6A-modified FZR1 and recruited the eIF3 translation initiation complex to accelerate FZR1 translation. FZR1 upregulation maintained the G0-G1 quiescent state and suppressed gemcitabine sensitivity in PDAC cells. Clinical analysis further demonstrated that both high levels of FZR1 m6A modification and FZR1 protein corresponded to poor response to gemcitabine. These findings reveal the critical function of m6A modification in regulating gemcitabine sensitivity in PDAC and identify the FZR1-GEMIN5 axis as a potential target to enhance gemcitabine response. SIGNIFICANCE: Increased FZR1 translation induced by m6A modification engenders a gemcitabine-resistant phenotype by inducing a quiescent state and confers a targetable vulnerability to improve treatment response in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proteínas Cdh1 , Linhagem Celular Tumoral , Gencitabina/farmacologia , Gencitabina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , RNA Mensageiro/genética , Neoplasias Pancreáticas
11.
Cancer Commun (Lond) ; 43(7): 729-748, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37350762

RESUMO

RNA N6 -methyladenosine modification is the most prevalent internal modification of eukaryotic RNAs and has emerged as a novel field of RNA epigenetics, garnering increased attention. To date, m6 A modification has been shown to impact multiple RNA metabolic processes and play a vital role in numerous biological processes. Recent evidence suggests that aberrant m6 A modification is a hallmark of cancer, and it plays a critical role in cancer development and progression through multiple mechanisms. Here, we review the biological functions of mRNA m6 A modification in various types of cancers, with a particular focus on metabolic reprogramming, programmed cell death and tumor metastasis. Furthermore, we discuss the potential of targeting m6 A modification or its regulatory proteins as a novel approach of cancer therapy and the progress of research on m6 A modification in tumor immunity and immunotherapy. Finally, we summarize the development of different m6 A detection methods and their advantages and disadvantages.


Assuntos
Neoplasias , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , RNA/genética , RNA/metabolismo , Epigênese Genética
12.
Cells ; 12(8)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37190098

RESUMO

Inflammation and mitochondrial-dependent oxidative stress are interrelated processes implicated in multiple neuroinflammatory disorders, including Alzheimer's disease (AD) and depression. Exposure to elevated temperature (hyperthermia) is proposed as a non-pharmacological, anti-inflammatory treatment for these disorders; however, the underlying mechanisms are not fully understood. Here we asked if the inflammasome, a protein complex essential for orchestrating the inflammatory response and linked to mitochondrial stress, might be modulated by elevated temperatures. To test this, in preliminary studies, immortalized bone-marrow-derived murine macrophages (iBMM) were primed with inflammatory stimuli, exposed to a range of temperatures (37-41.5 °C), and examined for markers of inflammasome and mitochondrial activity. We found that exposure to mild heat stress (39 °C for 15 min) rapidly inhibited iBMM inflammasome activity. Furthermore, heat exposure led to decreased ASC speck formation and increased numbers of polarized mitochondria. These results suggest that mild hyperthermia inhibits inflammasome activity in the iBMM, limiting potentially harmful inflammation and mitigating mitochondrial stress. Our findings suggest an additional potential mechanism by which hyperthermia may exert its beneficial effects on inflammatory diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Resposta ao Choque Térmico
13.
J Food Sci ; 88(6): 2679-2692, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37199447

RESUMO

The application of lactic acid bacteria (LAB) fermentation to the production of probiotic beverages is a common method for modifying the health-related functional characteristics and phytochemical content of such beverages. This study evaluated the effect of fermentation with Lactobacillus acidophilus NCIB1899, Lactobacillus casei CRL 431, and Lactobacillus paracasei LP33 on the total phenolic contents (PCs), flavonoid contents (FCs), phenolic profiles, and antioxidant capacities of the solvent-extractable (free) and cell-wall-bound (bound) fractions in quinoa varying in bran color. Compared with unfermented beverages, LAB fermentation significantly increased the free PCs and free FCs by 15.7%-79.4% and 7.6%-84.3%, respectively. The bound PCs increased, whereas bound FCs decreased in fermented black and red quinoa juice. The increments of procyanidin B2 , protocatechuic acid, p-hydroxybenzaldehyde, rutin, and kaempferol through 30 h fermentation exceeded 189%-622%, 13.8%-191%, 55.6%-100%, 48.5%-129%, and 120%-325%, respectively. However, the contents of catechin, procyanidin B1 , and ferulic acid decreased with fermentation. Overall, L. acidophilus NCIB1899, L. casei CRL431, and L. paracasei LP33 strains may be suitable for producing fermented quinoa probiotic beverages. L. acidophilus NCIB1899 was superior for fermentation to L. casei CRL431 and L. paracasei LP33. Red and black quinoa had significantly higher total (sum of free and bound) PC and FC concentrations and antioxidant capacities than white quinoa (p < 0.05) because of their higher concentrations of proanthocyanins and polyphenol, respectively. PRACTICAL APPLICATION: In this study, different LAB (L. acidophilus NCIB1899, L. casei CRL431, and L. paracasei LP33) were singly inoculated on aqueous solutions from quinoa to ferment probiotic beverage and to compare the metabolic capacity of LAB strains on nonnutritive phytochemicals (phenolic compounds). We observed that LAB fermentation greatly enhanced the phenolic and antioxidant activity of quinoa. The comparison indicated that the L. acidophilus NCIB1899 strain has the highest fermentation metabolic capacity.


Assuntos
Chenopodium quinoa , Lactobacillales , Probióticos , Lactobacillus/metabolismo , Antioxidantes/metabolismo , Fermentação , Lactobacillus acidophilus/metabolismo , Chenopodium quinoa/química , Lactobacillales/metabolismo , Fenóis/análise
14.
Anal Chem ; 95(2): 594-601, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36541929

RESUMO

In this work, following a metal-ceramic heater (MCH) as an electrothermal vaporizer (ETV), a novel composite Pt/Ni trap based on platinizing the foamed nickel was first fabricated to trap Hg and Cd simultaneously. So, a solid sampling Hg-Cd analyzer was developed to simultaneously detect trace Hg and Cd in soil samples, mainly consisting of an MCH, a composite Pt/Ni trap, and an atomic fluorescence spectrometer (AFS). This small-size MCH-ETV system only consumes 100 W for the complete vaporization of Hg and Cd in soil matrices. The Pt/Ni trap fulfills the complete trapping of Hg and Cd following the solid sampling MCH-ETV system and then fast releases them by heating. It was proved that trapped and released Hg and Cd by the Pt/Ni trap are atomic species using X-ray photoelectron spectroscopy (XPS) and other approaches; specially, the effective cotrapping of Hg and Cd might be due to forming alloys of Hg + Pt and Cd + Ni on the Pt/Ni trap. Under the optimized conditions, the method detection limits (LODs) of Hg and Cd reached 0.4 µg/kg and 0.04 µg/kg for a 20 mg sample size, the relative standard deviations (RSDs) were within 12% and 8% for soil samples, respectively, and the recoveries ranged from 96% to 105%, indicating favorable analytical sensitivity, precision, and accuracy. The whole analysis time can be controlled within 5 min without the soil digestion process. The proposed Hg-Cd analyzer is thus suitable for rapid detection of Hg and Cd in soil samples with advantages such as simplicity, green, and safety. Further, the proposed solid sampling ETV-composite trap method has a promising application potential in the field and rapid detection for multielements.


Assuntos
Cádmio , Mercúrio , Cádmio/análise , Níquel/análise , Mercúrio/análise , Platina/análise , Solo
15.
J Food Sci ; 87(11): 4878-4891, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36258662

RESUMO

This research aims to investigate the effects of both sequential fermentation and coinoculation fermentation with yeast and lactic acid bacterial (LAB) on the dynamics of changes in basic quality parameters and organic acid, anthocyanin, and phenolic components as well as antioxidant activity during the fermentation of blueberry. The coculture-fermented blueberry wine showed significant decreases in total phenolics, flavonoids, and anthocyanins,by 23.9%, 15.9%, and 13.7%, respectively, as compared with those before fermentation Fermentation changed the contents of organic acids in each group, with a more than 7-fold increase in lactic acid contents as well as a more than 4-fold reduction in quinic acid and malic acid contents. The content of all investigated anthocyanins first increased and then decreased. Moreover, different fermentation strategies exerted a profound influence on the dynamic change in phenolic components during fermentation; specifically, most of the phenolic acids showed a trend of increasing first, then decreasing, and finally increasing. Gallic acid, p-coumaric acid, quercetin, and myricetin were increased by 116.9%, 130.1%, 127.2% and 177.6%, respectively, while syringic acid, ferulic acid, cinnamic acid, and vanillic acid were decreased by 49.5%, 68.5%, and 37.1% in sequentially fermented blueberry wine. Coinoculation fermentation with yeast and LAB produces faster dynamic variations and higher organic acid, anthocyanin, and phenolic profiles than sequential inoculation fermentation. PRACTICAL APPLICATION: In this work, brewing technology of sequential fermentation and coinoculation fermentation with yeast and LAB (Lactobacillus plantarum SGJ-24 and Oenococcus oeni SD-2a) was adopted to ferment blueberry wine. This is an innovative technology of fruit wine brewing technology to produce wine products. Compared with traditional sequential brewing, simultaneous inoculation brewing can significantly accelerate the brewing process of fruit wine and slightly improve the quality of fruit wine in terms of active ingredients.


Assuntos
Mirtilos Azuis (Planta) , Lactobacillales , Vinho , Vinho/análise , Antocianinas , Fermentação , Saccharomyces cerevisiae , Fenóis/análise , Ácido Láctico/análise
16.
Nat Genet ; 54(9): 1427-1437, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071173

RESUMO

Transcriptional regulation, which integrates chromatin accessibility, transcription factors and epigenetic modifications, is crucial for establishing and maintaining cell identity. The interplay between different epigenetic modifications and its contribution to transcriptional regulation remains elusive. Here, we show that METTL3-mediated RNA N6-methyladenosine (m6A) formation leads to DNA demethylation in nearby genomic loci in normal and cancer cells, which is mediated by the interaction between m6A reader FXR1 and DNA 5-methylcytosine dioxygenase TET1. Upon recognizing RNA m6A, FXR1 recruits TET1 to genomic loci to demethylate DNA, leading to reprogrammed chromatin accessibility and gene transcription. Therefore, we have characterized a regulatory mechanism of chromatin accessibility and gene transcription mediated by RNA m6A formation coupled with DNA demethylation, highlighting the importance of the crosstalk between RNA m6A and DNA modification in physiologic and pathogenic process.


Assuntos
Cromatina , Desmetilação do DNA , Cromatina/genética , DNA/genética , Metilação de DNA/genética , RNA , Fatores de Transcrição/metabolismo
17.
Mar Pollut Bull ; 179: 113666, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35500373

RESUMO

Oil spill discharges from operational maritime activities like ships, oil rigs and other structures, leaking pipelines, as well as natural hydrocarbon seepage pose serious threats to marine ecosystems and fisheries. Satellite synthetic aperture radar (SAR) is a unique microwave instrument for marine oil spill monitoring, as it is not dependent on weather or sunlight conditions. Existing SAR oil spill detection approaches are limited by algorithm complexity, imbalanced data sets, uncertainties in selecting optimal features, and relatively slow detection speed. To overcome these restrictions, a fast and effective SAR oil spill detection method is presented, based a novel deep learning model, named the Faster Region-based Convolutional Neural Network (Faster R-CNN). This approach is capable of achieving fast end-to-end oil spill detection with reasonable accuracy. A large data set consisting of 15,774 labeled oil spill samples derived from 1786C-band Sentinel-1 and RADARSAT-2 vertical polarization SAR images is used to train, validate and test the Faster R-CNN model. Our experimental results show that the proposed method exhibits good performance for detection of oil spills with wide swath SAR imagery. The Precision and Recall metrics are 89.23% and 89.14%, respectively. The average Precision is 92.56%. The effects of environmental conditions and sensor parameters on oil spill detection are analyzed. The expected detection results are obtained when wind speeds and incidence angles are between 3 m/s and 10 m/s, and 21° and 45°, respectively. Furthermore, the computer runtime for oil spill detection is less than 0.05 s for each full SAR image, using a workstation with NVIDIA GeForce RTX 3090 GPU. This suggests that the present approach has potential for applications that require fast oil spill detection from spaceborne SAR images.


Assuntos
Aprendizado Profundo , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental/métodos , Petróleo/análise , Radar , Poluentes Químicos da Água/análise
18.
Front Endocrinol (Lausanne) ; 13: 860649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432213

RESUMO

Background: Modified Duhuo Jisheng Decoction (MDHJSD) is a traditional Chinese medicine prescription for the treatment of osteoporosis (OP), but its mechanism of action has not yet been clarified. This study aims to explore the mechanism of MDHJSD in OP through a combination of network pharmacology analysis and experimental verification. Methods: The active ingredients and corresponding targets of MDHJSD were acquired from the Traditional Chinese Medicine System Pharmacology (TCMSP) database. OP-related targets were acquired from databases, including Genecards, OMIM, Drugbank, CTD, and PGKB. The key compounds, core targets, major biological processes, and signaling pathways of MDHJSD that improve OP were identified by constructing and analysing the relevant networks. The binding affinities between key compounds and core targets were verified using AutoDock Vina software. A rat model of ovariectomized OP was used for the experimental verification. Results: A total of 100 chemical constituents, 277 targets, and 4734 OP-related targets of MDHJSD were obtained. Subsequently, five core components and eight core targets were identified in the analysis. Pathway enrichment analysis revealed that overlapping targets were significantly enriched in the tumour necrosis factor-alpha (TNF-α) signaling pathway, an inflammation signaling pathway, which contained six of the eight core targets, including TNF-α, interleukin 6 (IL-6), transcription factor AP-1, mitogen-activated protein kinase 3, RAC-alpha serine/threonine-protein kinase, and caspase-3 (CASP3). Molecular docking analysis revealed close binding of the six core targets of the TNF signaling pathway to the core components. The results of experimental study show that MDHJSD can protect bone loss, inhibit the inflammatory response, and downregulate the expression levels of TNF-α, IL-6, and CASP3 in ovariectomized rats. Conclusion: The mechanism of MDHJSD in the treatment of OP may be related to the regulation of the inflammatory response in the bone tissue.


Assuntos
Interleucina-6 , Osteoporose , Animais , Caspase 3/uso terapêutico , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Osteoporose/tratamento farmacológico , Ratos , Fator de Necrose Tumoral alfa
19.
Sensors (Basel) ; 22(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35408184

RESUMO

OBJECTIVE: The cast-in-place steel spring floating slab track (SSFST) is difficult to maintain and repair, while the mechanical strength of the end of the traditional prefabricated SSFST is poor. In order to overcome the above shortcomings, a shear-hinge-combined prefabricated SSFST was developed, and an indoor test was carried out to analyze its vibration-damping effect. METHODS: A combined shear hinge SSFST connection model with two length sizes was established. The dynamic response amplitude and frequency response characteristics of the foundation (ground) under different isolator installations and fatigue loads were studied, and the vibration-damping performance of two sizes of combined shear hinge SSFST was evaluated. RESULTS: The vibration-damping effect of the steel spring vibration isolator mainly acts in the middle and low-frequency bands of 16-400 Hz, and the vibration near 10 Hz will be aggravated after the vibration isolator is installed. The vibration index and variation law of the two sizes of SSFST are similar, and the vibration response of 4.8 m SSFST is slightly less than 3.6 m SSFST. There is almost no change in each index when the load is 5 million times, and there is a certain range of change when the load is 10 million times, but the overall change is small. CONCLUSIONS: The combined shear hinge prefabricated SSFST can have an excellent isolation effect on vibration and can still maintain good vibration-damping ability within 10 million fatigue loads (about 5 years); 4.8 m SSFST should be laid in straight sections with higher train speeds, while 3.6 m SSFST should be applied in curved sections to ensure smooth lines.

20.
Mol Ther ; 30(3): 1089-1103, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34995801

RESUMO

N6-methyladenosine (m6A) is the most prevalent RNA modification, and the effect of its dysregulation on esophageal squamous cell carcinoma (ESCC) development remains unclear. Here, by performing transcriptome-wide m6A sequencing in 16 ESCC tissue samples, we identified the key roles of m6A in TNFRSF1A (also known as TNFR1)-mediated MAPK and NF-κB activation in ESCC. Mechanistically, a functional protein involved in m6A methylation, ATXN2, is identified that augments the translation of TNFRSF1A by binding to m6A-modified TNFRSF1A mRNA. Upregulation of the TNFRSF1A protein level, a vital upstream switch for TNFRSF1A-mediated signaling events, activates the NF-κB and MAPK pathways and thus promotes ESCC development. Furthermore, TNFRSF1A m6A modifications and protein levels are upregulated in ESCC, and high levels of TNFRSF1A m6A and protein are correlated with poor ESCC patient survival. These results collectively indicate that the m6A-TNFRSF1A axis is critical for ESCC development and thus may serve as a potential druggable target.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Ataxina-2/genética , Ataxina-2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , NF-kappa B/metabolismo , RNA Mensageiro/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA