Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2317492121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547056

RESUMO

Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.


Assuntos
Amoeba , Linhagem Celular Tumoral , Movimento Celular , Fenômenos Físicos
2.
Small ; 20(7): e2305777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797188

RESUMO

Stimulus-responsive mode is highly desirable for improving the precise monitoring and physiological efficacy of endogenous biomarkers (EB). However, its integrated application for visual detection and therapy is limited by inappropriate use of responsive triggers and poor delivery of EB signal-transducing agents, which remain challenging in simultaneous monitoring and noninvasive therapy of EB and EB-mediated pathological events. Target microRNA (miRNA) as controllable reaction triggers and DNAzyme as signal-transducing agent are proposed to develop target-stimulated multifunctional nanocabinets (MFNCs) for the visual tracking of both miRNA and miRNA-mediated anticancer events. The MFNCs, equipped with a target-discriminating sequence-incorporated DNAzyme motif, can specifically release therapeutic molecules through target-triggered conformational switches, accompanied by transduction signal output. Target detection and molecule release performance are recorded in parallel via reverse dual-signal feedback at the single-molecule level. In addition, the intrinsic thermal-replenishing of the MFNCs leads to tumor ablation without invasive exogenous aids. The system achieves visual target quantification, anticancer molecule real-time tracking, and tumor suppression in vivo and in vitro. This work proposes a new paradigm for precise visual exploration of EB or EB-mediated bio-events and provides a demonstration of efficacious all-in-one detection and therapy based on the target-triggered multifunctional nanosystem.


Assuntos
DNA Catalítico , MicroRNAs , Neoplasias , Humanos , Retroalimentação , MicroRNAs/genética , Neoplasias/tratamento farmacológico
3.
Anal Chem ; 95(41): 15276-15285, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37782295

RESUMO

Small extracellular vesicles (sEVs) have emerged as noninvasive biomarkers in liquid biopsy due to their significant function in pathology and physiology. However, the phenotypic heterogeneity of sEVs presents a significant challenge to their study and has significant implications for their applications in liquid biopsies. In this study, anodic aluminum oxide films with different pore sizes (AAO nanoarray) were introduced to enable size-based isolation and downstream proteomics profiling of sEV subpopulations. The adjustable pore size and abundant Al3+ on the framework of AAOs allowed size-dependent isolation of sEV subpopulations through nanoconfined effects and Lewis acid-base interaction between AAOs and sEVs. Benefiting from the strong concerted effect, the simple AAO nanoarray enabled specific isolation of three sEV subpopulations, termed "50", "90", and "150 nm" groups, from 10 µL of complex biological samples within 10 min with high capture efficiencies and purities. Moreover, the nanopores of AAOs also acted as nanoreactors for comprehensive proteomic profiling of the captured sEV subpopulations to reveal their heterogeneity. The AAO nanoarray was first investigated on sEVs from a cell culture medium, where sEV subpopulations could be clearly distinguished, and three traditional sEV-specific proteins (CD81, CD9, and FLOT1) could be identified by proteomic analysis. A total of 3946, 3951, and 3940 proteins were identified from 50, 90, and 150 nm sEV subpopulations, respectively, which is almost twice the number compared to those obtained from the conventional approach. The concept was further applied to complex real-case sample analysis from prostate cancer patients. Machine learning and gene ontology (GO) information analysis of the identified proteins indicate that different-sized sEV subpopulations contain unique protein cargos and have distinct cellular components and molecular functions. Further receiver operating characteristic curve (ROC) analysis of the top five differential proteins from the three sEV subpopulations demonstrated the high accuracy of the proposed approach toward prostate cancer diagnosis (AUC > 0.99). More importantly, several proteins involved in focal adhesion and antigen processing and presentation pathways were found to be upregulated in prostate cancer patients, which may serve as potential biomarkers of prostate cancer. These results suggest that the sEV subpopulation-based AAO nanoarray is of great value in facilitating the early diagnosis and prognosis of cancer and opens a new avenue for sEVs in liquid biopsy.


Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Masculino , Humanos , Proteômica , Prognóstico , Neoplasias da Próstata/diagnóstico , Biomarcadores
4.
Chem Sci ; 13(37): 11197-11204, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320480

RESUMO

Cancer cells utilize a range of migration modes to navigate through a confined tissue microenvironment in vivo, while regulatory roles of key microRNAs (miRNAs) remain unclear. Precisely engineered microconfinement and the high spatial-resolution imaging strategy offer a promising avenue for deciphering the molecular mechanisms that drive cell migration. Here, enzyme-free signal-amplification nanoprobes as an effective tool are developed for three-dimensional (3D) high-resolution profiling of key miRNA molecules in single migrating cells, where distinct migration modes are precisely driven by microconfinement-engineered microchips. The constructed nanoprobes exhibit intuitive and ultrasensitive miRNA characterization in vitro by virtue of a single-molecule imaging microscope, and the differential expression and intracellular locations in different cell lines are successfully monitored. Furthermore, 3D spatial distribution of miR-141 at high resolution in flexible phenotypes of migrating cells is reconstructed in the engineered biomimetic microenvironment. The results indicate that miR-141 may be involved in the metastatic transition from a slow to a fast migration state. This work offers a new opportunity for investigating regulatory mechanisms of intracellular key biomolecules during cell migration in biomimetic microenvironments, which may advance in-depth understanding of cancer metastasis in vivo.

5.
Biosens Bioelectron ; 207: 114194, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35325718

RESUMO

Accurate discrimination between different cells at the molecular level is of fundamental importance for disease diagnosis. Endogenous proteases are such molecular candidates for cancer cell subtype study. But in situ probing their activity in live cells remains challenging for surface-enhanced Raman scattering (SERS). Here, we present a sensitive ratio-type SERS nanoprobe for imaging of matrix metalloproteinase-2 (MMP-2) in different cancer cells subtypes. The nanoprobe contained three components: a plasmon-active gold nanoparticle as the SERS enhancing matrix, Raman dye rhodamine B (Rh B)-labelled substrate peptides as the specific MMP-2 recognizer, and 2-naphthalenethiol (2-NT) as the internal standard. MMP-2-responsive cleavage of peptides from the nanoprobe surface results in decrease or even disappearance of SERS emission of Rh B, which was ratioed over the emission of 2-NT for the quantification of MMP-2 activity. Both in-tube assay and in-cell imaging results show that the MMP-responsive nanoprobe can work and serve to differentiate the normal breast cells from the tumorous ones, to differentiate two breast cancer cell subtypes with a different degree of malignancy. We believe that this SERS nanoprobe could find a wide application in the fields of tumor biology and accurate disease diagnosis.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Nanopartículas Metálicas , Neoplasias da Mama/diagnóstico por imagem , Feminino , Ouro/química , Humanos , Metaloproteinase 2 da Matriz , Nanopartículas Metálicas/química , Peptídeos/química , Análise Espectral Raman/métodos
6.
Anal Chem ; 93(2): 709-714, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33315384

RESUMO

Exosomes are considered promising indicators for early cancer diagnosis. The multiple protein biomarkers carried by exosomes are associated with diverse significant biological processes and are important biomarkers of cancer subtypes. However, it is challenging to sensitively and accurately quantify protein biomarkers from a few exosomes. Herein, we propose an ultrasensitive method for quantitatively profiling protein biomarkers on the surface of exosomes by integrating mass spectrometry imaging and gold nanoparticle (AuNP)-based signal amplification. Organic oligomers as mass tags and specific antibodies are modified on AuNPs to form biomarker probes. Exosomes captured by the antibody-coated gold chip are recognized by the AuNPs probes, forming a sandwich immunoassay. By mass spectrometry imaging the mass tags, multiple protein biomarkers can be quantitatively detected from the exosomes, with a limit-of-detection (LOD) down to 50 exosome particles. As a proof of concept, exosomes secreted by different breast-cancer cell subtypes, i.e. MCF-7 and MDA-MB231, were distinguished by the level of surface protein biomarkers of CD9, CD44, and epithelial cell adhesion molecule (EpCAM) acquired by the method, demonstrating that exosomes could be used for the diagnosis of cancer at subtype level. In consideration of the advantages of the ultrasensitivity, accuracy, and simplicity, the strategy has potential prospects in biomarker discovery, cellular phenotype characterization, and cancer diagnosis.


Assuntos
Exossomos/química , Imunoensaio/métodos , Espectrometria de Massas/métodos , Biomarcadores/química , Neoplasias da Mama/classificação , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Feminino , Humanos , Receptores de Hialuronatos , Limite de Detecção , Análise Serial de Proteínas , Tetraspanina 29
7.
Chem Sci ; 11(15): 3812-3819, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-34122849

RESUMO

Cell status changes are typically accompanied by the simultaneous changes of multiple microRNA (miRNA) levels. Thus, simultaneous and ultrasensitive detection of multiple miRNA biomarkers shows great promise in early cancer diagnosis. Herein, a facile single-molecule fluorescence imaging assay was proposed for the simultaneous and ultrasensitive detection of multiple miRNAs using only one capture anti-DNA/RNA antibody (S9.6 antibody). Two complementary DNAs (cDNAs) designed to hybridize with miRNA-21 and miRNA-122 were labelled with Cy3 (cDNA1) and Cy5 (cDNA2) dyes at their 5'-ends, respectively. After hybridization, both miRNA-21/cDNA1 and miRNA-122/cDNA2 complexes were captured by S9.6 antibodies pre-modified on a coverslip surface. Subsequently, the Cy3 and Cy5 dyes on the coverslip surface were imaged by the single-molecule fluorescence setup. The amount of miRNA-21 and miRNA-122 was quantified by counting the image spots from the Cy3 and Cy5 dye molecules in the green and red channels, respectively. The proposed assay displayed high specificity and sensitivity for singlet miRNA detection both with a detection limit of 5 fM and for multiple miRNA detection both with a detection limit of 20 fM. Moreover, it was also demonstrated that the assay could be used to detect multiple miRNAs simultaneously in human hepatocellular cancer cells (HepG2 cells). The proposed assay provides a novel biosensing platform for the ultrasensitive and simple detection of multiple miRNA expressions and shows great prospects for early cancer diagnosis.

8.
Anal Chem ; 91(15): 9500-9507, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31291094

RESUMO

Aberrant DNA methylation by DNA methyltransferases (MTase) is related to the initiation and progression of many diseases. Thus, site-specific identification of DNA methylation and detection of MTase activity are very important to diagnose and treat methylation-related diseases. Herein, a single-molecule counting based ultrasensitive assay was developed for facile and direct detection of MTase activity and inhibitor screening without the assistance of restriction endonuclease. A double-strand DNA (dsDNA) was designed with the recognition site of M. SssI MTase and assembled on the coverslip surface. After the dsDNA was methylated by M. SssI, the biotin conjugated anti-5-methylcytosine antibody (5mC Ab) would specifically bind the CpG methylation site, and subsequently, the streptavidin-labeled quantum dots (QS585) bind the biotins. By taking and counting the image spots of fluorescently labeled methylated dsDNA molecules, the single-molecule imaging of methylated dsDNA molecules was recorded to quantify the DNA MTase activity. The spot number shows a linear relation with the logarithm of M. SssI concentration in the concentration range of 0.001-1 U/mL. Compared with most of the state of the art methods, the proposed assay displays a lower detection limit of 0.0005 U/mL and can detect the DNA MTase more directly. Moreover, it can selectively detect M. SssI in more complex samples. In addition, it is further demonstrated that the protocol could be successfully applied to evaluate the inhibition efficiency of M. SssI inhibitors. This assay is anticipated to provide a new approach for clinical diagnosis of methylation-related diseases and screening of new anticancer drugs.


Assuntos
DNA-Citosina Metilases/metabolismo , DNA/metabolismo , Imagem Óptica/métodos , Imagem Individual de Molécula/métodos , DNA/química , Metilação de DNA , DNA-Citosina Metilases/sangue , DNA-Citosina Metilases/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA