Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Foods ; 13(19)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39410161

RESUMO

The level of consumption of summer tea is a problem in the development of China's tea industry. Current strategies to enhance the quality of summer and autumn teas primarily target the cultivation environment, with less emphasis on processing improvements. This study aimed to optimize the fermentation parameters to impact the quality of summer and autumn teas. We screened four strains of lactic acid bacteria (LAB) suitable for tea fermentation and determined their optimal mix. This optimized blend was applied to ferment summer and autumn teas. Through single-factor experiments, we evaluated the impact of various processing parameters, including the fixation method, rolling degree, inoculation amount, glucose concentration, fermentation temperature, and fermentation duration, on LAB growth and tea quality. The optimal processing conditions were established as microwave fixation, heavy rolling, an inoculation rate of 1.8% LAB, glucose addition at 8.8%, and fermentation at 36.5 °C for five days. Analysis revealed that the fermentation process significantly reduced the levels of polyphenols and ester-type catechins, which are associated with astringency and bitterness while enhancing the content of gamma-aminobutyric acid (GABA). Specifically, after five days, polyphenol content decreased by 26.89%, and GABA levels increased from 0.051 mg/g to 0.126 mg/g. The predominant aroma compounds in the fermented tea were alcohols with floral and fruity scents, constituting 54.63% of the total aroma profile. This research presents a methodical approach to reduce the astringency and bitterness of summer and autumn teas while concurrently increasing GABA levels.

2.
Pathol Res Pract ; 256: 155287, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579576

RESUMO

The lack of expression of terminal deoxynucleotidyl transferase (TdT) is frequently associated with KMT2A-rearranged subtype of pediatric acute lymphoblastic leukemia (ALL). However, this association has not been investigated extensively in the Asian population. A retrospective analysis of TdT expression in pediatric B-cell ALL (B-ALL) was performed in patients treated using the Taiwan Pediatric Oncology Group (TPOG) ALL 2002 and 2013 protocols. Among the 331 patients with B-ALL, 12 patients showed TdT negativity at initial diagnosis. Among these, eight patients showed KMT2A rearrangement (66.7%). Other patients showing negative TdT expression had ETV6::RUNX1, MEF2D-rearranged, and other B-ALL subtypes. However, in the context of KMT2A-rearranged B-ALL (n = 20), only eight patients showed TdT negativity. The 5-year event-free survival and overall survival of patients with and without TdT expression were 83.8% versus 46.8% (P <0.001) and 86.3% versus 55.4% (P = 0.004), respectively. Moreover, several aberrant markers, such as CD2, CD56, CD7, and CD117, were rarely expressed in the B-ALL samples, and if expressed, they were enriched in specific genetic subtypes. The results of this study indicate that immunophenotypic features are correlated with specific genetic subtypes of childhood B-ALL.


Assuntos
DNA Nucleotidilexotransferase , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , DNA Nucleotidilexotransferase/metabolismo , Estudos Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico
3.
J Immunol ; 212(5): 844-854, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38231123

RESUMO

Infection after fracture fixation (IAFF), a complex infectious disease, causes inflammatory destruction of bone tissue and poses a significant clinical challenge. miR-345-3p is a biomarker for tibial infected nonunion; however, the comprehensive mechanistic role of miR-345-3p in IAFF is elusive. In this study, we investigated the role of miR-345-3p in IAFF pathogenesis through in vivo and in vitro experiments. In vivo, in a rat model of IAFF, miR-345-3p expression was downregulated, accompanied by increased M1 macrophage infiltration and secretion of proinflammatory factors. In vitro, LPS induced differentiation of primary rat bone marrow-derived macrophages into M1 macrophages, which was attenuated by miR-345-3p mimics. miR-345-3p promoted M1 to M2 macrophage transition-it reduced the expression of cluster of differentiation (CD) 86, inducible NO synthase, IL-1ß, and TNF-α but elevated those of CD163, arginase-1, IL-4, and IL-10. MAPK kinase kinase 1 (MAP3K1), a target mRNA of miR-345-3p, was overexpressed in the bone tissue of IAFF rats compared with that in those of the control rats. The M1 to M2 polarization inhibited MAP3K1 signaling pathways in vitro. Conversely, MAP3K1 overexpression promoted the transition from M2 to M1. miR-345-3p significantly inhibited NF-κB translocation from the cytosol to the nucleus in a MAP3K1-dependent manner. In conclusion, miR-345-3p promotes the polarization of M1 macrophages to the M2 phenotype by inhibiting the MAP3K1 and NF-κB pathways. These findings provide insight into the pathogenesis and immunotherapeutic strategies for IAFF and offer potential new targets for subsequent research.


Assuntos
MicroRNAs , Osteomielite , Ratos , Animais , NF-kappa B/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Osteomielite/patologia
4.
J Med Chem ; 66(24): 16694-16703, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38060985

RESUMO

Nicotinamide adenine dinucleotide (NAD) is essentially involved in many biological processes of cancer cells, yet chemical intervention of NAD biosynthesis failed to obtain an optimal therapeutic benefit. We herein developed a new strategy to induce catastrophic NAD depletion by concurrently impairing NAD synthesis and promoting NAD consumption. We designed a series of new compounds that conjugate an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in the NAD salvage pathway, with a DNA-alkylating agent. Among them, compound 11b exhibited potent anticancer efficacy in cancer cell lines and mouse tumor models with intrinsic resistance to the parent compound FK866 or chlorambucil. Compound 11b caused catastrophic NAD depletion via a synergistic effect between the NAD salvage pathway blockade and DNA damage-triggered NAD consumption. Our findings suggest a new intervention strategy for causing catastrophic NAD depletion in cancer cells and provide basis for the development of new inhibitors targeting NAD metabolism.


Assuntos
NAD , Neoplasias , Animais , Camundongos , NAD/metabolismo , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
5.
J Med Chem ; 66(23): 15699-15714, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37983010

RESUMO

Recent studies revealed that intestinal microbiota played important roles in colorectal cancer (CRC) carcinogenesis. Particularly, Fusobacterium nucleatum was confirmed to promote the proliferation and metastasis of CRC. Therefore, targeting F. nucleatum may be a potential preventive and therapeutic approach for CRC. Herein, 2,272 off-patent drugs were screened inhibitory activity against F. nucleatum. Among the hits, nitisinone was identified as a promising anti-F. nucleatum lead compound. Further optimization of nitisinone led to the discovery of more potent derivatives. Particularly, compounds 19q and 22c showed potent anti-F. nucleatum activity (MIC50 = 1 and 2 µg/mL, respectively) with low cytotoxicity. Among them, compound 19q effectively attenuated the migratory ability of MC-38 cells induced by F. nucleatum. Preliminary mechanism studies suggested that nitisinone and its derivatives might act by downregulating nitroreductase and tryptophanase. Thus, the development of small molecule F. nucleatum inhibitors represents an effective strategy to treat CRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Fusobacterium nucleatum/fisiologia , Neoplasias Colorretais/patologia , Triptofanase , Reposicionamento de Medicamentos , Neoplasias do Colo/tratamento farmacológico
6.
J Cancer ; 14(16): 3066-3077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859823

RESUMO

Silencing of heat shock protein 60 (HSP60) suppresses the growth of hepatocellular carcinoma (HCC). Mifepristone inhibits HSP60 mRNA expression in Chlamydophila-infected epithelial cells. The aim of this study was to determine whether mifepristone could inhibit the growth of HCC cells by affecting the functions of HSP60. The effect of mifepristone on cell viability was examined by flow cytometry and a cell proliferation assay. Protein-protein interactions were examined using the immunoprecipitation assay. The anti-tumor effect of mifepristone was evaluated using a xenograft model. Our results indicated that mifepristone induces cell cycle arrest at the G1 phase and early-stage apoptosis in HCC cells. Instead of reducing the total amount of HSP60, mifepristone induced the release of mitochondrial HSP60 into the cytosol by causing a loss of ΔΨm, thereby enhancing glucocorticoid receptor (GR)-HSP60-survivin complex formation as well as survivin degradation. Animal models have confirmed the growth inhibitory effects of mifepristone on HCC, including changes in the abundance of HSP60 in mitochondria and cytosol, decreased survivin and Ki-67-positive cells, as well as increased cell apoptosis. In conclusion, the inhibition of HCC growth by mifepristone may be achieved by altering the subcellular distribution of HSP60 to enhance the formation of cytosolic GR-HSP60-survivin complexes in the cells, leading to the degradation of survivin.

7.
Bioorg Chem ; 138: 106586, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37178651

RESUMO

Fusobacterium nucleatum (F. nucleatum) is closely associated with the occurrence and development of colorectal cancer (CRC). Discovery of specific antibacterial agents against F. nucleatum was urgent for the prevention and treatment of CRC. We screened a natural product library and successfully identified higenamine as an antibacterial hit against F. nucleatum. Further hit optimizations led to the discovery of new higenamine derivatives with improved anti-F. nucleatum activity. Among them, compound 7c showed potent antibacterial activity against F. nucleatum (MIC50 = 0.005 µM) with good selectivity toward intestinal bacteria and normal cells. It significantly inhibited the migration of CRC cells induced by F. nucleatum. Mechanism study revealed that compound 7c impaired the integrity of biofilm and cell wall, which represents a good starting point for the development of novel anti-F. nucleatum agents.


Assuntos
Neoplasias Colorretais , Humanos , Fusobacterium nucleatum , Antibacterianos/farmacologia
8.
Adv Drug Deliv Rev ; 197: 114819, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024014

RESUMO

Invasive fungal infections (IFIs) are emerging as a serious threat to public health and are associated with high incidence and mortality. IFIs also represent a frequent complication in patients with cancer who are undergoing chemotherapy. However, effective and safe antifungal agents remain limited, and the development of severe drug resistance further undermines the efficacy of antifungal therapy. Therefore, there is an urgent need for novel antifungal agents to treat life-threatening fungal diseases, especially those with new mode of action, favorable pharmacokinetic profiles, and anti-resistance activity. In this review, we summarize new antifungal targets and target-based inhibitor design, with a focus on their antifungal activity, selectivity, and mechanism. We also illustrate the prodrug design strategy used to improve the physicochemical and pharmacokinetic profiles of antifungal agents. Dual-targeting antifungal agents offer a new strategy for the treatment of resistant infections and cancer-associated fungal infections.


Assuntos
Micoses , Neoplasias , Pró-Fármacos , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Pró-Fármacos/uso terapêutico , Micoses/tratamento farmacológico , Neoplasias/complicações , Neoplasias/tratamento farmacológico
9.
Virol J ; 20(1): 25, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759854

RESUMO

BACKGROUND: Newcastle disease virus (NDV) is a highly infectious viral disease, which can affect chickens and many other kinds of birds. The main virulence factor of NDV, the fusion (F) protein, is located on the viral envelope and plays a major role in the virus' ability to penetrate cells and cause host cell fusion during infection. Multiple highly conserved tyrosine and di-leucine (LL) motifs in the cytoplasmic tail (CT) of the virus may contribute to F protein functionality in the viral life cycle. METHODS: To examine the contribution of the LL motif in the biosynthesis, transport, and function of the F protein, we constructed and rescued a NDV mutant strain, rSG10*-F/L537A, with an L537A mutation using a reverse genetic system. Subsequently, we compared the differences in the syncytium formation ability, pathogenicity, and replication levels of wild-type rSG10* and the mutated strain. RESULTS: Compared with rSG10*, rSG10*-F/L537A had attenuated syncytial formation and pathogenicity, caused by a viral budding defect. Further studies showed that the LL-motif mutation did not affect the replication, transcription, or translation of the virus genome but affected the expression of the F protein at the cell surface. CONCLUSIONS: We concluded that the LL motif in the NDV F CT affected the regulation of F protein expression at the cell surface, thus modulating the viral fusion ability and pathogenic phenotype.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/genética , Galinhas , Leucina , Mutação , Mutagênese , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
10.
Anticancer Res ; 43(3): 1201-1206, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854516

RESUMO

BACKGROUND/AIM: An epidemiological investigation indicated that tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs) were associated with a lower risk of hepatocellular carcinoma (HCC). Another previous study showed that seven antidepressants inhibited glucocorticoid receptor (GR)-mediated gene transcription, a pathway that is linked to various diseases, including cancer. It is known that the expression levels of GR in cancerous tissues are higher than those in noncancerous tissues in patients with HCC. Notably, among the seven antidepressants, amitriptyline (TCA), desipramine (TCA), and fluoxetine (SSRI) were found to induce apoptosis in HCC cells. Given this, we investigated whether four other GR-specific antidepressants, including mianserin (atypical antidepressant), tianeptine (atypical antidepressant), imipramine (TCA), and moclobemide (monoamine oxidase inhibitor, MAOI) affect the cell viability of HCC. MATERIALS AND METHODS: Cell proliferation and IC50 curves were determined by MTT assays. RESULTS: Imipramine and mianserin significantly inhibited HCC cell viability, whereas moclobemide and tianeptine did not. IC50 showed that the same dose of imipramine or mianserin led to significant inhibitory effects on HCC cells whereas there were only slight effects on normal human hepatocytes (HH). CONCLUSION: According to previous and present findings, TCAs, SSRIs and mianserin may have anti-tumor activity in HCC. However, the appropriate dose, frequency, and route of the administration still need to be determined in future preclinical and clinical studies.


Assuntos
Antidepressivos de Segunda Geração , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Mianserina , Imipramina/farmacologia , Moclobemida , Inibidores Seletivos de Recaptação de Serotonina , Neoplasias Hepáticas/tratamento farmacológico , Antidepressivos/farmacologia
11.
World J Clin Cases ; 11(3): 709-718, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36793633

RESUMO

BACKGROUND: Soft tissue tuberculosis is rare and insidious, with most patients presenting with a localized enlarged mass or swelling, which may be factors associated with delayed diagnosis and treatment. In recent years, next-generation sequencing has rapidly evolved and has been successfully applied to numerous areas of basic and clinical research. A literature search revealed that the use of next-generation sequencing in the diagnosis of soft tissue tuberculosis has been rarely reported. CASE SUMMARY: A 44-year-old man presented with recurrent swelling and ulcers on the left thigh. Magnetic resonance imaging suggested a soft tissue abscess. The lesion was surgically removed and tissue biopsy and culture were performed; however, no organism growth was detected. Finally, Mycobacterium tuberculosis was confirmed as the pathogen responsible for infection through next-generation sequencing analysis of the surgical specimen. The patient received a standardized anti-tuberculosis treatment and showed clinical improvement. We also performed a literature review on soft tissue tuberculosis using studies published in the past 10 years. CONCLUSION: This case highlights the importance of next-generation sequencing for the early diagnosis of soft tissue tuberculosis, which can provide guidance for clinical treatment and improve prognosis.

12.
J Med Chem ; 66(2): 1239-1253, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36622852

RESUMO

Breast cancer is susceptible to Candida infections, and candidiasis has an enhancing effect on the progression and metastasis of tumor. Breast cancer and concurrent candidiasis represent a significant challenge in clinical therapy. Herein, a series of novel small molecule inhibitors simultaneously targeting bromodomain and extra-terminal (BET) and histone deacetylase (HDAC) were designed for combinational treatment of breast cancer and resistant Candida albicans infections. Among them, compounds 13c and 17b exhibited excellent and balanced inhibitory activity against both BET family proteins BRD4 and HDAC1. As compared with BRD4 or HDAC1 inhibitors, dual inhibitors 13c and 17b displayed improved in vivo antitumor efficacy in MDA-MB-231 breast cancer xenograft models. Notably, they synergized with fluconazole (FLC) to effectively reduce the kidney fungal burden in a murine model of disseminated candidiasis. Thus, the BET-HDAC dual inhibitors represented a novel therapeutic strategy for combinational treatment of breast cancer and concurrent candidiasis.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Candidíase , Humanos , Camundongos , Animais , Feminino , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Proteínas Nucleares , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Fatores de Transcrição , Candidíase/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Proteínas de Ciclo Celular
13.
Clin Epigenetics ; 14(1): 106, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999564

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common primary liver malignancies worldwide. The long-term prognosis for HCC remains extremely poor, with drug resistance being the major underlying cause of recurrence and mortality. The lncRNA colorectal neoplasia differentially expressed (CRNDE) is an epigenetic mediator and plays an important role to drive proliferation and drug resistance in HCC. However, CRNDE as an epigenetic regulator with influences sorafenib resistance in HCC is unclear. Thus, we explore the potential of targeting the CRNDE/p300/YY1 axis as a novel therapeutic strategy to overcome sorafenib resistance of HCC. METHOD: Detection of the expression level of CRNDE and EGFR in clinical specimens of HCC. CRNDE, EGFR, p300, and YY1expression were altered in HCC cells through transfection with different plasmids, and cell proliferation, migration, invasion, and sorafenib resistance were subsequently observed. Immunoprecipitation, chromatin immunoprecipitation, re-chromatin immunoprecipitation, site-directed mutagenesis, RNA Immunoprecipitation, immune fluorescence, qRT-PCR, and western blotting were performed to uncover the mechanisms of CRNDE regulation. The xenograft nude mice model was used to investigate the tumor growth and sorafenib resistance. RESULTS: In this study, we showed that CRNDE expression is significantly positively correlated with that of epidermal growth factor receptor (EGFR) in clinical specimens of HCC and induces proliferation and sorafenib resistance of HCC via EGFR-mediated signaling. Mechanistically, CRNDE stabilized the p300/YY1 complex at the EGFR promoter and simultaneously enhanced histone H3K9 and H3K27 acetylation, which serve as markers of relaxed chromatin. EGFR was positively upregulated by the epigenetic complex, p300/YY1, in a manner dependent on CRNDE expression, leading to enhanced tumor cell proliferation and sorafenib resistance. Furthermore, C646, a p300 inhibitor, suppressed EGFR transcriptional activity by decreasing chromatin relaxation and YY1 binding, which effectively reduced proliferation/sorafenib resistance and prolonged overall survival. CONCLUSION: Our collective findings support the potential of targeting the CRNDE/p300/YY1 axis as a novel therapeutic strategy to overcome sorafenib resistance of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Colorretais , Neoplasias Hepáticas , RNA Longo não Codificante , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Fator de Transcrição YY1
14.
Anticancer Res ; 42(5): 2479-2486, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35489767

RESUMO

BACKGROUND/AIM: Clinically, some cancer patients develop drug resistance after receiving a few courses of chemotherapy, or even worse, completely lack therapeutic response. Prediction of treatment response before administration is of value to oncologists. This study aimed to evaluate the feasibility of drug sensitivity tests for circulating tumor cells (CTCs) isolated from patients with advanced hepatocellular carcinoma (HCC). MATERIALS AND METHODS: CTCs isolated from patients receiving cytotoxic chemotherapy or sorafenib were subjected to drug tests using ex vivo culture. Thirty-one patients with advanced HCC and one with benign lesions were enrolled in the study. RESULTS: After incubation with chemotherapeutic drugs ex vivo, the numbers of CTCs were decreased in 10/12 (83.3%) of treatment-naïve patients (planning to receive the first course of chemotherapy) but increased in all patients (6/6) who had received chemotherapy (p=0.002). The CTC count was negatively correlated with the overall survival of patients (p=0.016). The CTCs of patients who received targeted therapy (n=11), were incubated with sorafenib for sensitivity tests. After comparing the chemotherapy and sorafenib-treated groups, the CTCs in the latter group had a lower probability to develop drug resistance (p=0.031). CONCLUSION: An ex vivo culture-based drug sensitivity test was developed for CTCs isolated from advanced HCC patients. The drug test found that resistance developed rapidly following cytotoxic chemotherapy, whereas it was rarely observed in patients receiving sorafenib. For patients with advanced HCC who choose to receive chemotherapy, CTC drug sensitivity tests may help predict treatment response.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Carcinoma Hepatocelular/patologia , Contagem de Células , Humanos , Neoplasias Hepáticas/patologia , Células Neoplásicas Circulantes/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
15.
Phytochemistry ; 199: 113167, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35378107

RESUMO

In the present study, purine alkaloid analysis and transcriptome of Camellia gymnogyna Hung T. Chang (Theaceae) from Dayao Mountain were performed by high-performance liquid chromatography (HPLC) and RNA-Seq, respectively. The results showed that the major purine alkaloids accumulated in Camellia gymnogyna Hung T. Chang (Theaceae) were theobromine together with a small amount of theacrine and caffeine. Through polymerase chain reaction (PCR), three types of cDNA encoding N-methyltransferases were isolated from the leaves of Camellia gymnogyna Hung T. Chang (Theaceae) and designated GCS1, GCS2, and GCS3. We subsequently expressed GCS1, GCS2, and GCS3 in Escherichia coli and incubated lysates of the bacterial cells with a variety of xanthine substrates in the presence of S-adenosyl-L-methionine as the methyl donor. We found that the recombinant GCS1 proteins catalyzed 1,3,7-trimethyluric acid to produce theacrine, the recombinant GCS3 proteins catalyzed 7-methylxanthine to produce theobromine, while the recombinant GCS2 proteins did not catalyze any xanthine derivatives. Simultaneous analysis of the expressions of GCS1, GCS2, GCS3, and a caffeine synthase gene (TCS1) in Camellia gymnogyna Hung T. Chang (Theaceae) and other tea plants provided a reference for further research on the functions of these genes.


Assuntos
Alcaloides , Camellia , Theaceae , Alcaloides/química , Vias Biossintéticas , Camellia/química , Camellia/genética , Metiltransferases/metabolismo , Purinas/metabolismo , Theaceae/metabolismo , Teobromina/metabolismo , Xantinas/metabolismo
16.
J Med Chem ; 65(6): 4818-4831, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35238576

RESUMO

On the basis of the synergism of topoisomerase (Top) and histone deacetylase (HDAC) inhibitors in antitumor therapy, a series of novel Top/HDAC dual inhibitors were designed and synthesized by the pharmacophore fusion strategy. After systematic structure-activity relationship studies, lead compound 16j was identified to simultaneously inhibit both Top and HDAC with good potency, which showed potent antiproliferative activities with a broad spectrum. Mechanistic studies indicated that compound 16j efficiently induced apoptosis with S cell-cycle arrest in HEL cancer cells. It was orally active in HEL xenograft models and exhibited excellent in vivo antitumor efficacy (TGI = 68.5%; 10 mg/kg). Altogether, this work highlights the therapeutic potential of evodiamine-inspired Top/HDAC dual inhibitors and provides a valuable lead compound for the development of novel antitumor agents for leukemia therapy.


Assuntos
Antineoplásicos , Leucemia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Humanos , Leucemia/tratamento farmacológico , Relação Estrutura-Atividade
17.
J Clin Psychol Med Settings ; 29(2): 432-445, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35249176

RESUMO

This meta-analysis was a systematic review of evidence on the effects of mindfulness-based stress reduction (MBSR) and mindfulness-based cognitive therapy (MBCT) on quality of life (QOL), pain, fatigue, anxiety, and depression in cancer patients. Until July 2020, PubMed, Cochrane Library, and Embase were searched for randomized controlled trials (RCTs). The study included 18 RCTs. The MBSR/MBCT intervention resulted in a significant effect on QOL (SMD 0.80, CI 0.28, 1.32, I2 = 94%). In subgroup analysis, MBSR/MBCT interventions had a significant effect in the early cancer stage on anxiety (SMD - 3.48, CI - 4.07, - 2.88), and QOL (SMD 4.30, CI 3.62, 4.99); in alleviating decreasing pain (SMD - 0.42, CI - 0.70, - 0.14) within 4 weeks after the end of intervention, and alleviating fatigue in younger participants (SMD - 0.64, CI - 1.09, - 0.19). MBSR/MBCT has short-term effects on cancer patients, especially in younger patients and early cancer stages.


Assuntos
Atenção Plena , Neoplasias , Ansiedade/etiologia , Ansiedade/psicologia , Ansiedade/terapia , Fadiga/etiologia , Fadiga/psicologia , Fadiga/terapia , Humanos , Atenção Plena/métodos , Neoplasias/complicações , Neoplasias/terapia , Dor , Qualidade de Vida
18.
Oncogene ; 41(2): 159-172, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716430

RESUMO

Pseudogenes are generally considered "junk" DNA or "genomic fossils" generated during the evolution process that lack biological activity. However, accumulating reports indicate that pseudogenes have biological functions critical for cancer development. Experiments from the current study showed marked overexpression of the cytidine monophospho-N-acetylneuraminic acid hydroxylase pseudogene (CMAHP) in gastric cancer, which was associated with poor overall survival. However, the mechanisms underlying the activity of CMAHP in tumor development are largely unknown. Gene Set Enrichment Analysis (GSEA) revealed that CMAHP-correlated genes are significantly involved in epithelial-mesenchymal transition (EMT) and angiogenesis. Functional studies further confirmed that CMAHP mediates metastasis and angiogenesis in vitro and in vivo. Furthermore, CMAHP promoted cancer cell migration, invasion, and metastasis through Snail overexpression, which decreased ubiquitination mediated by NF-κB signaling. Angiogenesis is known to be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation. CMAHP increased GM-CSF transactivation via promoting direct binding of c-Jun to the -1981/-1975 region of the GM-CSF promoter. Notably, CMAHP interacts with Histone H1.4 promoting histone acetylation to enhance c-Jun and RelA (p65) expression. Our collective findings provide novel evidence that CMAHP contributes to tumor progression and modulates metastasis and angiogenesis in gastric cancer.


Assuntos
Indutores da Angiogênese/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Neoplasias Gástricas/genética , Ubiquitinação/efeitos dos fármacos , Indutores da Angiogênese/farmacologia , Linhagem Celular Tumoral , Humanos , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida
19.
Cancers (Basel) ; 13(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771525

RESUMO

Liver cancer is the leading cause of cancer-related mortality in the world. This mainly reflects the lack of early diagnosis tools and effective treatment methods. MicroRNAs (miRNAs) are a class of non-transcribed RNAs, some of which play important regulatory roles in liver cancer. Here, we discuss microRNAs with key impacts on liver cancer, such as miR-122, miR-21, miR-214, and miR-199. These microRNAs participate in various physiological regulatory pathways of liver cancer cells, and their modulation can have non-negligible effects in the treatment of liver cancer. We discuss whether these microRNAs can be used for better clinical diagnosis and/or drug development. With the advent of novel technologies, fast, inexpensive, and non-invasive RNA-based biomarker research has become a new mainstream approach. However, the clinical application of microRNA-based markers has been limited by the high sequence similarity among them and the potential for off-target problems. Therefore, researchers particularly value microRNAs that are specific to or have special functions in liver cancer. These include miR-122, which is specifically expressed in the liver, and miR-34, which is necessary for the replication of the hepatitis C virus in liver cancer. Clinical treatment drugs have been developed based on miR-34 and miR-122 (MRX34 and Miravirsen, respectively), but their side effects have not yet been overcome. Future research is needed to address these weaknesses and establish a feasible microRNA-based treatment strategy for liver cancer.

20.
Biology (Basel) ; 10(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34356472

RESUMO

Spinal anesthesia is generally accepted as an effective and safe practice. Three rare incidents of postoperative cerebral infarction after surgery under spinal anesthesia prompted us to assess whether spinal bupivacaine may compromise carotid or cerebral blood flow. Postoperative examination after the stroke incident revealed that all three patients shared a common pathology of stenosis or atheromatosis in the carotid or middle cerebral artery. In a companion study using 69 Sprague-Dawley rats, subarachnoid application of bupivacaine elicited an initial (Phase I) reduction in the mean arterial pressure, carotid blood flow (CBF) and baroreflex-mediated sympathetic vasomotor tone, all of which subsequently returned to baseline (Phase II). Whereas heart rate (HR) exhibited sustained reduction, cardiac vagal baroreflex, baroreflex efficiency index (BEI) and tissue perfusion and oxygen in the cerebral cortex remained unaltered. However, in one-third of the rats studied, Phase II gave way to Phase III characterized by secondary hypotension and depressed baroreflex-mediated sympathetic vasomotor tone, along with declined HR, sustained cardiac vagal baroreflex, decreased BEI, reduced CBF and waning tissue perfusion or oxygen in the cerebral cortex. We concluded that carotid and cerebral blood flow can indeed be compromised after spinal anesthesia, and an impaired baroreflex-mediated sympathetic vasomotor tone, which leads to hypotension, plays a contributory role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA