Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nat Commun ; 15(1): 4160, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755128

RESUMO

The regeneration of critical-size bone defects, especially those with irregular shapes, remains a clinical challenge. Various biomaterials have been developed to enhance bone regeneration, but the limitations on the shape-adaptive capacity, the complexity of clinical operation, and the unsatisfied osteogenic bioactivity have greatly restricted their clinical application. In this work, we construct a mechanically robust, tailorable and water-responsive shape-memory silk fibroin/magnesium (SF/MgO) composite scaffold, which is able to quickly match irregular defects by simple trimming, thus leading to good interface integration. We demonstrate that the SF/MgO scaffold exhibits excellent mechanical stability and structure retention during the degradative process with the potential for supporting ability in defective areas. This scaffold further promotes the proliferation, adhesion and migration of osteoblasts and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. With suitable MgO content, the scaffold exhibits good histocompatibility, low foreign-body reactions (FBRs), significant ectopic mineralisation and angiogenesis. Skull defect experiments on male rats demonstrate that the cell-free SF/MgO scaffold markedly enhances bone regeneration of cranial defects. Taken together, the mechanically robust, personalised and bioactive scaffold with water-responsive shape-memory may be a promising biomaterial for clinical-size and irregular bone defect regeneration.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Fibroínas , Magnésio , Células-Tronco Mesenquimais , Osteogênese , Alicerces Teciduais , Fibroínas/química , Fibroínas/farmacologia , Regeneração Óssea/efeitos dos fármacos , Animais , Alicerces Teciduais/química , Masculino , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Ratos , Magnésio/química , Magnésio/farmacologia , Materiais Biocompatíveis/química , Osteoblastos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Água/química , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Crânio/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Bombyx
2.
Bioengineering (Basel) ; 10(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37508783

RESUMO

This study compares the accuracy and safety of pedicle screw placement using a 3D navigation template with the free-hand fluoroscopy technique in scoliotic patients. Fifteen scoliotic patients were recruited and divided into a template group (eight cases) and a free-hand group (seven cases). All patients received posterior corrective surgeries, and the pedicle screw was placed using a 3D navigation template or a free-hand technique. After surgery, the positions of the pedicle screws were evaluated using CT. A total of 264 pedicle screws were implanted in 15 patients. Both the two techniques were found to achieve satisfactory safety of screw insertion in scoliotic patients (89.9% vs. 90.5%). In the thoracic region, the 3D navigation template was able to achieve a much higher accuracy of screw than the free-hand technique (75.3% vs. 60.4%). In the two groups, the accuracy rates on the convex side were slightly higher than on the concave side, while no significance was seen. In terms of rotational vertebrae, no significant differences were seen in Grades I or II vertebrae between the two groups. In conclusion, the 3D navigation template technique significantly increased the accuracy of thoracic pedicle screw placement, which held great potential for extensively clinical application.

3.
Bioengineering (Basel) ; 10(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37370638

RESUMO

Excessive distraction in corrective spine surgery can lead to iatrogenic distraction spinal cord injury. Diagnosis of the location of the spinal cord injury helps in early removal of the injury source. The time-frequency components of the somatosensory evoked potential have been reported to provide information on the location of spinal cord injury, but most studies have focused on contusion injuries of the cervical spine. In this study, we established 19 rat models of distraction spinal cord injury at different levels and collected the somatosensory evoked potentials of the hindlimb and extracted their time-frequency components. Subsequently, we used k-medoid clustering and naive Bayes to classify spinal cord injury at the C5 and C6 level, as well as spinal cord injury at the cervical, thoracic, and lumbar spine, respectively. The results showed that there was a significant delay in the latency of the time-frequency components distributed between 15 and 30 ms and 50 and 150 Hz in all spinal cord injury groups. The overall classification accuracy was 88.28% and 84.87%. The results demonstrate that the k-medoid clustering and naive Bayes methods are capable of extracting the time-frequency component information depending on the spinal cord injury location and suggest that the somatosensory evoked potential has the potential to diagnose the location of a spinal cord injury.

4.
Neural Regen Res ; 18(2): 422-427, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900440

RESUMO

The spinal cord is at risk of injury during spinal surgery. If intraoperative spinal cord injury is identified early, irreversible impairment or loss of neurological function can be prevented. Different types of spinal cord injury result in damage to different spinal cord regions, which may cause different somatosensory and motor evoked potential signal responses. In this study, we examined electrophysiological and histopathological changes between contusion, distraction, and dislocation spinal cord injuries in a rat model. We found that contusion led to the most severe dorsal white matter injury and caused considerable attenuation of both somatosensory and motor evoked potentials. Dislocation resulted in loss of myelinated axons in the lateral region of the injured spinal cord along the rostrocaudal axis. The amplitude of attenuation in motor evoked potential responses caused by dislocation was greater than that caused by contusion. After distraction injury, extracellular spaces were slightly but not significantly enlarged; somatosensory evoked potential responses slightly decreased and motor evoked potential responses were lost. Correlation analysis showed that histological and electrophysiological findings were significantly correlated and related to injury type. Intraoperative monitoring of both somatosensory and motor evoked potentials has the potential to identify iatrogenic spinal cord injury type during surgery.

5.
World J Stem Cells ; 14(11): 798-814, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36483847

RESUMO

BACKGROUND: Cartilage tissue engineering is a promising strategy for treating cartilage damage. Matrix formation by adipose-derived stem cells (ADSCs), which are one type of seed cell used for cartilage tissue engineering, decreases in the late stage of induced chondrogenic differentiation in vitro, which seriously limits research on ADSCs and their application. AIM: To improve the chondrogenic differentiation efficiency of ADSCs in vitro, and optimize the existing chondrogenic induction protocol. METHODS: Tumor necrosis factor-alpha (TNF-α) inhibitor was added to chondrogenic culture medium, and then Western blotting, enzyme linked immunosorbent assay, immunofluorescence and toluidine blue staining were used to detect the cartilage matrix secretion and the expression of key proteins of nuclear factor kappa-B (NF-κB) signaling pathway. RESULTS: In this study, we found that the levels of TNF-α and matrix metalloproteinase 3 were increased during the chondrogenic differentiation of ADSCs. TNF-α then bound to its receptor and activated the NF-κB pathway, leading to a decrease in cartilage matrix synthesis and secretion. Blocking TNF-α with its inhibitors etanercept (1 µg/mL) or infliximab (10 µg/mL) significantly restored matrix formation. CONCLUSION: Therefore, this study developed a combination of ADSC therapy and targeted anti-inflammatory drugs to optimize the chondrogenesis of ADSCs, and this approach could be very beneficial for translating ADSC-based approaches to treat cartilage damage.

6.
Brain Sci ; 12(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421907

RESUMO

The Zero-P spacer was primarily developed aiming to reduce the morbidity associated with the traditional anterior cervical plate. During the past decade, many authors have reported the use of Zero-P spacers for anterior cervical discectomy and fusion (ACDF) of one or two segments. Nevertheless, there is still a paucity of knowledge on the safety and feasibility of using Zero-P spacers for 3-level fixation. The objective of this study was to investigate the clinical and radiological outcomes, with a focus on the sagittal alignment reconstruction of 3-level ACDF surgery using Zero-P spacers versus those using a traditional plate and cage system. From Sep 2013 to Aug 2016, a total of 44 patients who received 3-level ACDF surgery due to cervical spondylotic myelopathy were recruited. The Zero-P spacer was used in 23 patients (group ZP) and the traditional plate and cage system in 21 (group PC). Clinical outcomes were analyzed by Neck Disability Index (NDI) and Japanese Orthopedic Association (JOA) scores, and dysphagia was evaluated using the Bazaz score. Radiological outcomes, including fusion rate, adjacent segment degeneration (ASD), and especially changes in cervical sagittal alignment, were analyzed. The NDI and JOA scores did not differ significantly between the two groups postoperatively (p > 0.05); however, there was significantly less dysphagia in patients using Zero-P spacers at the 3- and 6-month follow-up (p < 0.05). At the 24-month follow-up, the fusion rate and ASD were similar between the two groups (p > 0.05). Interestingly, patients using Zero-P spacers had a significantly lower postoperative C2-7 Cobb angle and fused segment Cobb angle, compared to those using a traditional plate and cage system (p < 0.05); meanwhile, the fused segment disc wedge was also found to be significantly smaller in patients using Zero-P spacers after surgery (p < 0.05). Moreover, we further divided patients into subgroups according to their cervical lordosis. In patients with a preoperative C2-7 Cobb angle ≤ 10°, significantly less cervical and local lordosis, as well as disc wedge, were seen in group ZP after surgery (p < 0.05), while in others with a preoperative C2-7 Cobb angle > 10°, no significant difference in postoperative changes of the cervical sagittal alignment was seen between group ZP and group PC (p > 0.05). Zero-P spacers used in 3-level ACDF surgery could provide equivalent clinical outcomes and a lower rate of postoperative dysphagia, compared to the traditional plate and cage system. However, our results showed that it was inferior to the cervical plate in terms of sagittal alignment reconstruction for 3-level fixation. We recommend applying Zero-P spacers for 3-level ACDF in patients with good preoperative cervical lordosis (C2-7 Cobb angle > 10°), in order to restore and maintain physiological curvature of the cervical spine postoperatively.

7.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(9): 1132-1143, 2022 Sep 15.
Artigo em Chinês | MEDLINE | ID: mdl-36111477

RESUMO

Objective: To compare the short-term effectiveness and the impact on cervical segmental range of motion using Prodisc-C Vivo artificial disc replacement and Zero-P fusion for the treatment of single-segment cervical spondylosis. Methods: The clinical data of 56 patients with single-segment cervical spondylosis who met the selection criteria between January 2015 and December 2018 were retrospectively analyzed, and they were divided into study group (27 cases, using Prodisc-C Vivo artificial disc replacement) and control group (29 cases, using Zero-P fusion) according to different surgical methods. There was no significant difference between the two groups in terms of gender, age, type of cervical spondylosis, disease duration, involved segments and preoperative pain visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, neck disability index (NDI), surgical segments range of motion, upper and lower adjacent segments range of motion, overall cervical spine range of motion, and cervical curvature (P>0.05). The operation time, intraoperative blood loss, postoperative hospitalization stay, time of returning to work, clinical effectiveness indicators (VAS score, JOA score, NDI, and improvement rate of each score), and imaging indicators (surgical segments range of motion, upper and lower adjacent segments range of motion, overall cervical spine range of motion, and cervical curvature, prosthesis position, bone absorption, heterotopic ossification, etc.) were recorded and compared between the two groups. Results: There was no significant difference in operation time and intraoperative blood loss between the two groups (P>0.05); the postoperative hospitalization stay and time of returning to work in the study group were significantly shorter than those in the control group (P<0.05). Both groups were followed up 12-64 months, with an average of 26 months. There was no complication such as limb or organ damage, implant failure, and severe degeneration of adjacent segments requiring reoperation. The VAS score, JOA score, and NDI of the two groups at each time point after operation significantly improved when compared with those before operation (P<0.05); there was no significant difference in the above scores at each time point after operation between the two groups (P>0.05); there was no significant difference in the improvement rate of each score between the two groups at last follow-up (P>0.05). The surgical segments range of motion in the study group maintained to varying degrees after operation, while it in the control group basically disappeared after operation, showing significant differences between the two groups (P<0.05). At last follow-up, there was no significant difference in the upper and lower adjacent segments range of motion in the study group when compared with preoperative ones (P>0.05), while the upper adjacent segments range of motion in the control group increased significantly (P<0.05). The overall cervical spine range of motion and cervical curvature of the two groups decreased at 3 months after operation, and increased to varying degrees at last follow-up, but there was no significant difference between groups and within groups (P>0.05). At last follow-up, X-ray films and CT examinations showed that no prosthesis loosening, subsidence, or displacement was found in all patients; there were 2 cases (7.4%) of periprosthetic bone resorption and 3 cases (11.1%) of heterotopic ossification which did not affect the surgical segments range of motion. Conclusion: Both the Prodisc-C Vivo artificial disc replacement and Zero-P fusion have satisfactory short-term effectiveness in treatment of single-segment cervical spondylosis. Prodisc-C Vivo artificial disc replacement can also maintain the cervical spine range of motion to a certain extent, while reducing the occurrence of excessive motion of adjacent segments after fusion.


Assuntos
Ossificação Heterotópica , Espondilose , Substituição Total de Disco , Vértebras Cervicais/cirurgia , Humanos , Estudos Retrospectivos , Espondilose/cirurgia , Substituição Total de Disco/métodos
8.
Artigo em Inglês | MEDLINE | ID: mdl-35417350

RESUMO

Among patients with cervical myelopathy, the most common level of stenosis at spinal cord of all ages was reported to be between cervical levels C5-6. Previous studies found that time-frequency components (TFCs) of somatosensory evoked potentials (SEPs) possess location information of spinal cord injury (SCI) in single-level deficits in the spinal cord. However, the clinical reality is that there are multiple compressions at multiple spinal cord segments. This study proposed a new algorithm to differentiate distribution patterns of SEP TFCs between the dual-level compression and the corresponding single-level compression, which is potential in providing precise diagnosis of cervical myelopathy. In the present animal study, a group of rats with dual-level compressive (C5+6) injury to cervical spinal cord was investigated. SEPs were collected at 2 weeks after surgery, while SEP TFCs were calculated. The SEP TFCs under dual-level compression were compared to an existent dataset with one sham control group and three single level compression groups at C4, C5, C6. Behavioral evaluation showed very similar scale of injury severity between individual rats, while histology evaluation confirmed the precise location of injury. According to time-frequency distribution patterns, it showed that the middle-energy components of dual-level showed similar patterns as that of each single-level group. In addition, the low-energy components of the dual-level C5+6 group had the highest correlation with C5 (R = 0.3423, p < 0.01) and C6 (R = 0.4000, p < 0.01) groups, but much lower with C4 group (R = 0.1071, p = 0.012). These results indicated that SEP TFCs components possess information regarding the location of neurological lesion after spinal cord compression. It preliminarily demonstrated that SEP TFCs are likely a useful measure to provide location information of neurological lesions after compression SCI.


Assuntos
Compressão da Medula Espinal , Doenças da Medula Espinal , Traumatismos da Medula Espinal , Animais , Potenciais Somatossensoriais Evocados/fisiologia , Humanos , Ratos , Compressão da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/diagnóstico
9.
Stem Cells Int ; 2021: 6662164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763142

RESUMO

The combination of osteogenesis and angiogenesis dual-delivery trace element-carrying bioactive scaffolds and stem cells is a promising method for bone regeneration and repair. Canonical Wnt and HIF-1α signaling pathways are vital for BMSCs' osteogenic differentiation and secretion of osteogenic factors, respectively. Simultaneously, lithium (Li) and copper (Cu) can activate the canonical Wnt and HIF-1α signaling pathway, respectively. Moreover, emerging evidence has shown that the canonical Wnt and HIF signaling pathways are related to coupling osteogenesis and angiogenesis. However, it is still unclear whether the lithium- and copper-doped bioactive scaffold can induce the coupling of the osteogenesis and angiogenesis in BMSCs and the underlying mechanism. So, we fabricated a lithium- (Li+-) and copper- (Cu2+-) doped organic/inorganic (Li 2.5-Cu 1.0-HA/Col) scaffold to evaluate the coupling osteogenesis and angiogenesis effects of lithium and copper on BMSCs and further explore its mechanism. We investigated that the sustained release of lithium and copper from the Li 2.5-Cu 1.0-HA/Col scaffold could couple the osteogenesis- and angiogenesis-related factor secretion in BMSCs seeding on it. Moreover, our results showed that 500 µM Li+ could activate the canonical Wnt signaling pathway and rescue the XAV-939 inhibition on it. In addition, we demonstrated that the 25 µM Cu2+ was similar to 1% oxygen environment in terms of the effectiveness of activating the HIF-1α signaling pathway. More importantly, the combination stimuli of Li+ and Cu2+ could couple the osteogenesis and angiogenesis process and further upregulate the osteogenesis- and angiogenesis-related gene expression via crosstalk between the canonical Wnt and HIF-1α signaling pathway. In conclusion, this study revealed that lithium and copper could crosstalk between the canonical Wnt and HIF-1α signaling pathways to couple the osteogenesis and angiogenesis in BMSCs when they are sustainably released from the Li-Cu-HA/Col scaffold.

10.
World J Orthop ; 11(11): 523-527, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33269219

RESUMO

BACKGROUND: The correction surgery for severely multidimensional spinal deformity in neurofibromatosis type I is very difficult and it is still a very big challenge for spine surgeons. CASE SUMMARY: A 44-year-old woman presented with progressive kyphosis for more than 10 years and low back pain for 2 years. She had been diagnosed with neurofibromatosis at a local hospital many years ago. Conservative treatments had been applied, but the symptoms got worse rather than alleviated. Therefore, surgery was required. CONCLUSION: For this patient with severe deformity, the correction treatment of Ponte osteotomy followed by satellite rod technique in the region of the apical vertebra and the technique of pedicle screws and dual iliac screws had been applied, and successful clinical outcomes were achieved.

11.
Mater Sci Eng C Mater Biol Appl ; 110: 110640, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204074

RESUMO

Hydrogen (H2) is one of the major biodegradation products of magnesium (Mg) alloys implanted for bony fracture healing and reconstruction; H2 thus plays a significant role in the regulation of local microenvironment and the biology of resident cells. The interactions between the H2 and the local cells are of great interest, and a full understanding of the effect of H2 on bone marrow mononuclear cells (BMMCs) would accelerate the development of effective strategies for successful bony healing. This study investigates how H2, with different concentrations and durations, regulates the osteoclastogenesis of mouse BMMCs. First, using H2 with five concentrations (0%, 2%, 25%, 50% and 75%) and three durations (5, 7 and 10 days), the osteoclastogenesis of mouse BMMCs in these H2 conditions were measured using TRAP staining, F-actin ring formation assay, pit formation assay and RT-qPCR analysis. Based on these findings, the proliferation assay, apoptosis assay, western blot analysis and ELISA assay of BMMCs after osteoclast induction were performed. The findings showed that H2 (especially the 50% and 75% H2) obviously inhibited the osteoclast formation, function and osteoclast-related genes expression of osteoclast-induced BMMCs; additionally, H2 (50%) was found to reduce the proliferation, promote the apoptosis and inhibit the expression of osteoclast-related proteins of BMMCs with the presence of osteoclast-induced medium. Therefore, H2 significantly inhibited the osteoclastogenesis of mouse BMMCs, which may become a new therapeutic agent for anti-bony resorption and open new avenues for the translational research of Mg alloys.


Assuntos
Células da Medula Óssea/citologia , Hidrogênio/farmacologia , Leucócitos Mononucleares/citologia , Osteogênese/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo
12.
Stem Cells Int ; 2019: 4242178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885606

RESUMO

The osteogenic potential of mesenchymal stromal cells (MSCs) varies among different tissue sources. Strontium enhances the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs), but whether it exerts similar effects on placental decidual basalis-derived MSCs (PDB-MSCs) remains unknown. Here, we compared the influence of strontium on the proliferation and osteogenic differentiation of human PDB- and BM-MSCs in vitro. We found that 1 mM and 10 mM strontium, but not 0.1 mM strontium, evidently promoted the proliferation of human PDB- and BM-MSCs. These doses of strontium showed a comparable alkaline phosphatase activity in both cell types, but their osteogenic gene expressions were promoted in a dose-dependent manner. Strontium at doses of 0.1 mM and 1 mM elevated several osteogenic gene expressions of PDB-MSCs, but not those of BM-MSCs at an early stage. Nevertheless, they failed to enhance the mineralization of either cell type. By contrast, 10 mM strontium facilitated the osteogenic gene expression as well as the mineralization of human PDB- and BM-MSCs. Collectively, this study demonstrated that human PDB- and BM-MSCs shared a great similarity in response to strontium, which promoted their proliferation and osteogenic differentiation in a dose-dependent manner.

13.
Theranostics ; 9(24): 7108-7121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695756

RESUMO

Rationale The small molecule Kartogenin (KGN) promotes cartilage regeneration in osteoarthritis (OA) by activating stem cells differentiation, but its pharmacological mode-of-action remains unclear. KGN can be cleaved into 4-aminobiphenyl (4-ABP) and phthalic acid (PA) following enzymolysis of an amide bond. Therefore, this study investigated whether 4-ABP or PA exerted the same action as KGN. Methods KGN, 4-ABP and PA were analyzed in cartilage of mice after oral, intravenous or intra-articular administration of KGN by liquid chromatography-mass spectrometry method. Their effect on proliferation and chondrogenic differentiation of mesenchymal stem cells (MSC) was evaluated in vitro. Furthermore, their effect on cartilage preservation was tested in mice OA model induced by destabilization of medial meniscus. OA severity was quantified using OARSI histological scoring. Transcriptional analysis was used to find the possible targets of the chemicals, which were further validated. Results We demonstrated that while oral or intra-articular KGN delivery effectively ameliorated OA phenotypes in mice, only 4-ABP was detectable in cartilage. 4-ABP could induce chondrogenic differentiation and proliferation of MSC in vitro and promote cartilage repair in OA mouse models mainly by increasing the number of CD44+/CD105+ stem-cell and prevention of matrix loss. These effect of 4-ABP was stronger than that of KGN. Transcriptional profiling of 4-ABP-stimulated MSC suggested that RPS6KA2 and the PI3K-Akt pathway were 4-ABP targets; 4-ABP could activate the PI3K-Akt pathway to promote MSC proliferation and repair OA injury, which was blocked in RPS6KA2-knockdown MSC or RPS6KA2-deficient mice.Conclusion 4-ABP bio-distribution in cartilage promotes proliferation and chondrogenic differentiation of MSC, and repairs osteoarthritic lesions via PI3K-Akt pathway activation.


Assuntos
Compostos de Aminobifenil/metabolismo , Anilidas/metabolismo , Cartilagem/metabolismo , Ácidos Ftálicos/metabolismo , Regeneração , Administração Oral , Anilidas/administração & dosagem , Anilidas/farmacologia , Animais , Antígenos CD/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/lesões , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Humanos , Hidrólise , Masculino , Menisco/efeitos dos fármacos , Menisco/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Ácidos Ftálicos/administração & dosagem , Ácidos Ftálicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos
14.
Case Rep Surg ; 2019: 2350958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31065396

RESUMO

Oesophageal perforation is a rare complication occurring during or after cervical spine surgery, and the risk factors are not well understood. This study presents a case of a 25-year-old man with oesophageal perforation after anterior cervical spine surgery. It is suggested that four factors (anatomical structure, mechanism of trauma, implant dislodgment, and the operation) could induce postoperative oesophageal perforation after cervical spine surgery performed using the anterior surgical approach. A comprehensive understanding and early management of this complication are necessary for successful therapy.

16.
Burns Trauma ; 6: 34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574512

RESUMO

BACKGROUND: The lower third of the nose is one of the most important cosmetic units of the face, and its reconstructive techniques remain a big challenge. As an alternative approach to repair or regenerate the nasal tissue, the biomaterial-based strategy has been extensively investigated. The aim of this study is to determine the safety and efficacy of human acellular amniotic membrane (HAAM) to repair the full-thickness defects in the lower third of the nose in humans. METHODS: In this study, 180 patients who underwent excision of skin lesions of the lower third of the nose from 2012 to 2016 were included; of the patients, 92 received HAAM and Vaseline gauze treatments, and the other 88 patients received Vaseline gauze treatment only. The haemostasis time and the duration of operation were recorded during surgery; after surgery, the time to pain disappearance, scab formation and wound healing, and the wound healing rate were measured. RESULTS: Immediately after the HAAM implantation, a reduction of the haemostasis time and an accelerated disappearance of pain were observed. Compared with the control group, the formation and detachment of scab in patients who received the HAAM implantation were notably accelerated, postoperatively. When the diameter of the lesion exceeded 5 mm, the HAAM implantation was found to enhance the wound healing, although this enhancement was not seen when the diameter was less than 5 mm. Additionally, the HAAM implantation significantly reduced bleeding, wound infection and scar formation, postoperatively. CONCLUSIONS: HAAM-assisted healing is a promising therapy for lower third nasal reconstruction leading to rapid wound healing and fewer complications and thus has considerable potential for extensive clinical application in repairing skin wounds. TRIAL REGISTRATION: ChiCTR1800017618, retrospectively registered on July 08, 2018.

17.
J Tissue Eng Regen Med ; 12(11): 2188-2202, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30095863

RESUMO

A biomaterial-based strategy is employed to regenerate the degenerated intervertebral disc, which is considered a major generator of neck and back pain. Although encouraging enhancements in the anatomy and kinematics of the degenerative disc have been gained by biomaterials with various formulations in animals, the number of biomaterials tested in humans is rare. At present, most studies that involve the use of newly developed biomaterials focus on regeneration of the degenerative disc, but not pain relief. In this review, we summarise the current state of the art in the field of biomaterial-based regeneration or repair for the nucleus pulposus, annulus fibrosus, and total disc transplantation in animals and humans, and we then provide essential suggestions for the development and clinical translation of biomaterials for disc regeneration. It is important for researchers to consider the commonly neglected issues instead of concentrating solely on biomaterial development and fabrication.


Assuntos
Materiais Biocompatíveis , Degeneração do Disco Intervertebral/cirurgia , Disco Intervertebral , Regeneração , Substituição Total de Disco/métodos , Animais , Anel Fibroso/fisiologia , Anel Fibroso/cirurgia , Dor nas Costas/cirurgia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Humanos , Disco Intervertebral/fisiologia , Disco Intervertebral/transplante , Modelos Animais , Cervicalgia/cirurgia , Núcleo Pulposo/fisiologia , Núcleo Pulposo/cirurgia , Engenharia Tecidual/métodos
18.
Acta Biomater ; 79: 202-215, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165202

RESUMO

Many attempts have been made to repair articular cartilage defects, including mesenchymal stem cell (MSC)-based tissue engineering strategies. Although this approach shows promise, optimizing MSC sources and their delivery is challenging. This study was designed to test the feasibility of using MSCs found in the human arthroscopic flushing fluid (AFF) for cartilage regeneration, by incorporating them into a newly developed one-step rapid cross-linking hyper-branched polyPEGDA/HA hydrogel. AFF-MSCs were isolated from the original intra-articular flushing fluid of 10 patients prior to arthroscopic procedures. The hydrogel was fabricated with hyper-branched polyPEGDA and thiolated hyaluronic acid (HA). In vitro assays demonstrated that AFF-MSCs possessed the typical MSC morphology and phenotype, and maintained chondrogenic differentiation properties when encapsulated within the hydrogel. The AFF-MSC/hydrogel composite could significantly repair full-thickness cartilage defects generated in a rat model after 8 weeks of implantation; smooth cartilage was formed with evidence of hyaline cartilage formation. These data suggest that human AFF-MSCs are a novel and abundant MSC source that have high therapeutic value for cartilage regeneration. STATEMENT OF SIGNIFICANCE: Many attempts have been made to repair the defects of articular cartilage, including mesenchymal stem cell (MSC)-based tissue engineering strategies. Optimizing MSC sources and their delivery approaches still remain clinically challenging. Recent studies determined that MSCs derived from synovium and synovial fluid exhibited superior chondrogenic potential. However, no feasible methods to harvest these human tissues and cells have been impeding them for clinical application. Hereby, we explored a simple and easy accessible approach to obtain a new stem cell source from arthroscopic flushing fluid (AFF-MSCs), which probably contains plenty of MSCs from synovium and synovial fluid. Further experiments demonstrated that encapsulation of these stem cells with one-step rapid cross-linked polyPEGDA/HA hydrogel held very encouraging potential for cartilage regeneration.


Assuntos
Artroscopia , Cartilagem Articular/fisiologia , Células Imobilizadas/citologia , Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Regeneração , Idoso , Animais , Diferenciação Celular , Proliferação de Células , Separação Celular , Sobrevivência Celular , Humanos , Ácido Hialurônico/química , Hidrogéis/síntese química , Masculino , Pessoa de Meia-Idade , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Ratos Sprague-Dawley , Tomografia de Coerência Óptica , Cicatrização
19.
Mater Sci Eng C Mater Biol Appl ; 84: 12-20, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29519420

RESUMO

Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity.


Assuntos
Matriz Óssea/química , Materiais Revestidos Biocompatíveis/química , Estrôncio/química , Animais , Células da Medula Óssea/citologia , Carboximetilcelulose Sódica/química , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/farmacologia , Dopamina/química , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química
20.
Stem Cells Int ; 2018: 7131532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30651734

RESUMO

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA