Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Oncol Lett ; 28(1): 305, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38774454

RESUMO

Esculetin (Esc), a coumarin derivative and herbal medicinal compound used in traditional Chinese medicine, is extracted from Fraxinus chinensis. Esc has shown notable potential in the inhibition of proliferation, metastasis and cell cycle arrest in various cancer cell lines. The present review is based on research articles regarding Esc in the field of carcinoma, published between 2009 and 2023. These studies have unanimously demonstrated that Esc can effectively inhibit cancer cell proliferation through diverse mechanisms and modulate multiple signaling pathways, such as Wnt/ß-catenin, PI3K/Akt, MAPK and janus kinase/signal transducer and activator of transcription-3. In addition, the safety profile of Esc has been demonstrated in credible animal experiments, which has indicated Esc as an effective compound. Furthermore, the combination therapy of Esc with commonly used chemotherapeutic drugs holds great promise. The aim of the present review was to encourage further studies and applications of Esc in cancer therapy.

2.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730604

RESUMO

Despite significant advances in tumor biology and clinical therapeutics, metastasis remains the primary cause of cancer-related deaths. While RNA-seq technology has been used extensively to study metastatic cancer characteristics, challenges persist in acquiring adequate transcriptomic data. To overcome this challenge, we propose MetGen, a generative contrastive learning tool based on a deep learning model. MetGen generates synthetic metastatic cancer expression profiles using primary cancer and normal tissue expression data. Our results demonstrate that MetGen generates comparable samples to actual metastatic cancer samples, and the cancer and tissue classification yields performance rates of 99.8 ± 0.2% and 95.0 ± 2.3%, respectively. A benchmark analysis suggests that the proposed model outperforms traditional generative models such as the variational autoencoder. In metastatic subtype classification, our generated samples show 97.6% predicting power compared to true metastatic samples. Additionally, we demonstrate MetGen's interpretability using metastatic prostate cancer and metastatic breast cancer. MetGen has learned highly relevant signatures in cancer, tissue, and tumor microenvironments, such as immune responses and the metastasis process, which can potentially foster a more comprehensive understanding of metastatic cancer biology. The development of MetGen represents a significant step toward the study of metastatic cancer biology by providing a generative model that identifies candidate therapeutic targets for the treatment of metastatic cancer.

3.
Patterns (N Y) ; 5(2): 100894, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370127

RESUMO

Advancing precision oncology requires accurate prediction of treatment response and accessible prediction models. To this end, we present shinyDeepDR, a user-friendly implementation of our innovative deep learning model, DeepDR, for predicting anti-cancer drug sensitivity. The web tool makes DeepDR more accessible to researchers without extensive programming experience. Using shinyDeepDR, users can upload mutation and/or gene expression data from a cancer sample (cell line or tumor) and perform two main functions: "Find Drug," which predicts the sample's response to 265 approved and investigational anti-cancer compounds, and "Find Sample," which searches for cell lines in the Cancer Cell Line Encyclopedia (CCLE) and tumors in The Cancer Genome Atlas (TCGA) with genomics profiles similar to those of the query sample to study potential effective treatments. shinyDeepDR provides an interactive interface to interpret prediction results and to investigate individual compounds. In conclusion, shinyDeepDR is an intuitive and free-to-use web tool for in silico anti-cancer drug screening.

4.
Res Sq ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352479

RESUMO

Epstein-Barr virus (EBV) is the causative agent for multiple neoplastic diseases of epithelial and lymphocytic origin1-3. The heterogeneity of the viral elements expressed and the mechanisms by which these coding and non-coding genes maintain cancer cell properties in vivo remain elusive4,5. Here we conducted a multi-modal transcriptomic analysis of EBV-associated neoplasms and identified that the ubiquitously expressed RPMS1 non-coding RNAs support cancer cell properties by disruption of the interferon response. Our map of EBV expression shows a variable, but pervasive expression of BNLF2 discerned from the overlapping LMP1 RNA in bulk sequencing data. Using long-read single-molecule sequencing, we identified three new viral elements within the RPMS1 gene. Furthermore, single-cell sequencing datasets allowed for the separation of cancer cells and healthy cells from the same tissue biopsy and the characterization of a microenvironment containing interferon gamma excreted by EBV-stimulated T-lymphocytes. In comparison with healthy epithelium, EBV-transformed cancer cells exhibited increased proliferation and inhibited immune response induced by the RPMS1-encoded microRNAs. Our atlas of EBV expression shows that the EBV-transformed cancer cells express high levels of non-coding RNAs originating from RPMS1 and that the oncogenic properties are maintained by RPMS1 microRNAs. Through bioinformatic disentanglement of single cells from cancer tissues we identified a positive feedback loop where EBV-activated immune cells stimulate cancer cells to proliferate, which in turn undergo viral reactivation and trigger an immune response.

5.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313267

RESUMO

Motivation: Molecular Regulatory Pathways (MRPs) are crucial for understanding biological functions. Knowledge Graphs (KGs) have become vital in organizing and analyzing MRPs, providing structured representations of complex biological interactions. Current tools for mining KGs from biomedical literature are inadequate in capturing complex, hierarchical relationships and contextual information about MRPs. Large Language Models (LLMs) like GPT-4 offer a promising solution, with advanced capabilities to decipher the intricate nuances of language. However, their potential for end-to-end KG construction, particularly for MRPs, remains largely unexplored. Results: We present reguloGPT, a novel GPT-4 based in-context learning prompt, designed for the end-to-end joint name entity recognition, N-ary relationship extraction, and context predictions from a sentence that describes regulatory interactions with MRPs. Our reguloGPT approach introduces a context-aware relational graph that effectively embodies the hierarchical structure of MRPs and resolves semantic inconsistencies by embedding context directly within relational edges. We created a benchmark dataset including 400 annotated PubMed titles on N6-methyladenosine (m6A) regulations. Rigorous evaluation of reguloGPT on the benchmark dataset demonstrated marked improvement over existing algorithms. We further developed a novel G-Eval scheme, leveraging GPT-4 for annotation-free performance evaluation and demonstrated its agreement with traditional annotation-based evaluations. Utilizing reguloGPT predictions on m6A-related titles, we constructed the m6A-KG and demonstrated its utility in elucidating m6A's regulatory mechanisms in cancer phenotypes across various cancers. These results underscore reguloGPT's transformative potential for extracting biological knowledge from the literature. Availability and implementation: The source code of reguloGPT, the m6A title and benchmark datasets, and m6A-KG are available at: https://github.com/Huang-AI4Medicine-Lab/reguloGPT.

6.
J Cancer ; 15(4): 939-954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38230214

RESUMO

The disruption of zinc (Zn) homeostasis has been implicated in cancer development and progression through various signaling pathways. Maintaining intracellular zinc balance is crucial in the context of cancer. Human cells rely on two families of transmembrane transporters, SLC30A/ZNT and SLC39A/ZIP, to coordinate zinc homeostasis. While some ZNTs and ZIPs have been linked to cancer progression, limited information is available regarding the expression patterns of zinc homeostasis-related genes and their potential roles in predicting prognosis and developing therapeutic strategies for specific cancers. In this study, a systematic analysis was conducted to examine the expression of all genes from the SLC30A and SLC39A families at both mRNA and protein levels across different cancers. As a result, three SLC39A genes (SLC39A1, SLC39A4, and SLC39A8) were found to be significantly dysregulated in specific cancers, including cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), liver hepatocellular carcinoma (LIHC), pancreatic adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP). Moreover, the dysregulation of these genes was tightly associated with the prognosis of patients with those cancers. Furthermore, we found that the gene SLC39A8 exhibited the lowest mutation frequency in KIRP, whereas mutations in SLC39A4 were found to significantly impact overall survival (OS), disease-free (DF), and progress-free survival (PFS) in cancer patients, particularly in those with PAAD. Additionally, immune infiltration analysis revealed that SLC39A1, SLC39A4, and SLC39A8 may function as immune regulators in cancers. This provides new insights into understanding the complex relationship between zinc homeostasis and cancer progression.

7.
Chest ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38253312

RESUMO

BACKGROUND: The current one-size-fits-all screening strategy for lung cancer is not suitable for personalized screening. RESEARCH QUESTION: What is the risk-adapted starting age of lung cancer screening with comprehensive consideration of risk factors? STUDY DESIGN AND METHODS: The National Lung Cancer Screening program, a multicenter, population-based, prospective cohort study, was analyzed. Information on risk factor exposure was collected during the baseline risk assessment. A Cox proportional hazards model was used to estimate the association between risk factors and lung cancer incidence. Age-specific 10-year cumulative risk was calculated to determine the age at which individuals with various risk factors reached the equivalent risk level as individuals aged ≥ 50 years with active tobacco use and a ≥ 20 pack-year smoking history. RESULTS: Of the 1,031,911 participants enrolled in this study, 3,908 demonstrated lung cancer after a median follow-up of 3.8 years. We identified seven risk factors for lung cancer, including pack-years of smoking, secondhand smoke exposure, family history of lung cancer in first-degree relatives, history of respiratory diseases, occupational hazardous exposure, BMI, and diabetes. The 10-year cumulative risk of lung cancer for people aged ≥ 50 years with active tobacco use and a ≥ 20 pack-year smoking history was 1.37%, which was treated as the risk threshold for screening. Individuals who never smoked and those with active tobacco use and a < 30-pack-year history of smoking reached the equivalent risk level 1 to 14 years later compared with the starting age of 50 years. Men with active tobacco use, a ≥ 30-pack-year history of smoking, and concurrent respiratory diseases or diabetes should be screened 1 year earlier at the age of 49 years. INTERPRETATION: The personalized risk-adapted starting ages for lung cancer screening, based on the principle of equal management of equal risk, can served as an optimized screening strategy to identify high-risk individuals.

8.
Biol Reprod ; 110(4): 739-749, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206868

RESUMO

The occurrence of unexplained recurrent spontaneous abortion (URSA) is closely related to immune system disorders, however, the underlying mechanisms remain unclear. The purpose of this study was to investigate the expression of GRIM-19 in URSA and the possible pathogenesis of URSA according to macrophage polarization. Here, we showed that GRIM-19 was downregulated in the uterine decidual macrophages of patients with URSA and that GRIM-19 downregulation was accompanied by increased M1 macrophage polarization. Furthermore, the expression levels of glycolytic enzymes were substantially enhanced in the uterine decidual macrophages of URSA patients, and glycolysis in THP-1-derived macrophages was further enhanced by the downregulation of GRIM-19. Additionally, the increase of M1 macrophages resulting from the loss of GRIM-19 was significantly reversed in cells treated with 2-deoxy-D-glucose (2-DG, an inhibitor of glycolysis). To provide more direct evidence, GRIM-19 deficiency was shown to promote macrophage polarization to the M1 phenotype in GRIM-19+/- mouse uteri. Overall, our study provides evidence that GRIM-19 deficiency may play a role in regulating macrophage polarization in URSA, and that glycolysis may participate in this process.


Assuntos
Aborto Habitual , Aborto Espontâneo , Macrófagos , NADH NADPH Oxirredutases , Animais , Feminino , Humanos , Camundongos , Gravidez , Aborto Habitual/genética , Aborto Espontâneo/genética , Macrófagos/metabolismo , Fenótipo , Glicólise , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo
9.
J Neurointerv Surg ; 16(2): 177-182, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37080769

RESUMO

BACKGROUND: This study aimed to evaluate the efficacy, stability, and safety of computer-assisted microcatheter shaping (CAMS) in patients with intracranial aneurysms. METHODS: A total of 201 patients with intracranial aneurysms receiving endovascular coiling therapy were continuously recruited and randomly assigned to the CAMS and manual microcatheter shaping (MMS) groups. The investigated outcomes included the first-trial success rate, time to position the microcatheter in aneurysms, rate of successful microcatheter placement within 5 min, delivery times, microcatheter stability, and delivery performance. RESULTS: The rates of first-trial success (96.0% vs 66.0%, P<0.001), successful microcatheter placement within 5 min (96.04% vs 72.00%, P<0.001), microcatheter stability (97.03% vs 84.00%, P=0.002), and 'excellent' delivery performance (45.54% vs 24.00%, P<0.001) in the CAMS group were significantly higher than those in the MMS group. Additionally, the total microcatheter delivery and positioning time (1.05 minutes (0.26) vs 1.53 minutes (1.00)) was significantly shorter in the CAMS group than in the MMS group (P<0.001). Computer assistance (OR 14.464; 95% CI 4.733 to 44.207; P<0.001) and inflow angle (OR 1.014; 95% CI 1.002 to 1.025; P=0.021) were independent predictors of the first-trial success rate. CAMS could decrease the time of microcatheter position compared with MMS, whether for junior or senior surgeons (P<0.001). Moreover, computer assistance technology may be more helpful in treating aneurysms with acute angles (p<0.001). CONCLUSIONS: The use of computer-assisted procedures can enhance the efficacy, stability, and safety of surgical plans for coiling intracranial aneurysms.


Assuntos
Embolização Terapêutica , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/terapia , Aneurisma Intracraniano/cirurgia , Embolização Terapêutica/métodos , Resultado do Tratamento
10.
mBio ; 15(1): e0301123, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38117084

RESUMO

IMPORTANCE: Kaposi's sarcoma (KS) is the most common cancer in HIV-infected patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Hyperinflammation is the hallmark of KS. In this study, we have shown that KSHV mediates hyperinflammation by inducing IL-1α and suppressing IL-1Ra. Mechanistically, KSHV miRNAs and vFLIP induce hyperinflammation by activating the NF-κB pathway. A common anti-inflammatory agent dexamethasone blocks KSHV-induced hyperinflammation and tumorigenesis by activating glucocorticoid receptor signaling to suppress IL-1α and induce IL-1Ra. This work has identified IL-1-mediated inflammation as a potential therapeutic target and dexamethasone as a potential therapeutic agent for KSHV-induced malignancies.


Assuntos
Transformação Celular Neoplásica , Dexametasona , Herpesvirus Humano 8 , Receptores de Glucocorticoides , Sarcoma de Kaposi , Humanos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Herpesvirus Humano 8/fisiologia , Inflamação/virologia , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Receptores de Glucocorticoides/metabolismo , Sarcoma de Kaposi/tratamento farmacológico
11.
BMC Complement Med Ther ; 23(1): 436, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049779

RESUMO

BACKGROUND: Despite the critical progress of non-small cell lung cancer (NSCLC) therapeutic approaches, the clinical outcomes remain considerably poor. The requirement of developing novel therapeutic interventions is still urgent. In this study, we showed for the first time that diosbulbin C, a natural diterpene lactone component extracted from traditional Chinese medicine Dioscorea bulbifera L., possesses high anticancer activity in NSCLC. METHODS: A549 and NCI-H1299 cells were used. The inhibitory effects of the diosbulbin C on NSCLC cell proliferation were evaluated using cytotoxicity, clone formation, EdU assay, and flow cytometry. Network pharmacology methods were used to explore the targets through which the diosbulbin C inhibited NSCLC cell proliferation. Molecular docking, qRT-PCR, and western blotting were used to validate the molecular targets and regulated molecules of diosbulbin C in NSCLC. RESULTS: Diosbulbin C treatment in NSCLC cells results in a remarkable reduction in cell proliferation and induces significant G0/G1 phase cell cycle arrest. AKT1, DHFR, and TYMS were identified as the potential targets of diosbulbin C. Diosbulbin C may inhibit NSCLC cell proliferation by downregulating the expression/activation of AKT, DHFR, and TYMS. In addition, diosbulbin C was predicted to exhibit high drug-likeness properties with good water solubility and intestinal absorption, highlighting its potential value in the discovery and development of anti-lung cancer drugs. CONCLUSIONS: Diosbulbin C induces cell cycle arrest and inhibits the proliferation of NSCLC cells, possibly by downregulating the expression/activation of AKT, DHFR, and TYMS.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Dioscorea , Neoplasias Pulmonares , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Simulação de Acoplamento Molecular , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Fase G1
12.
Mol Hum Reprod ; 30(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38113413

RESUMO

Ferroptosis is an iron-dependent programmed cell death process characterized by the accumulation of lethal oxidative damage. Localized iron overload is a unique clinical phenomenon in ovarian endometriosis (EM). However, the role and mechanism of ferroptosis in the course of ovarian EM remain unclear. Traditionally, autophagy promotes cell survival. However, a growing body of research suggests that autophagy promotes ferroptosis under certain conditions. This study aimed to clarify the status of ferroptosis in ovarian EM and explore the mechanism(s) by which iron overload causes ferroptosis and ectopic endometrial resistance to ferroptosis in human. The results showed increased levels of iron and reactive oxygen species in ectopic endometrial stromal cells (ESCs). Some ferroptosis and autophagy proteins in the ectopic tissues differed from those in the eutopic endometrium. In vitro, iron overload caused decreased cellular activity, increased lipid peroxidation levels, and mitochondrial morphological changes, whereas ferroptosis inhibitors alleviated these phenomena, illustrating activated ferroptosis. Iron overload increased autophagy, and ferroptosis caused by iron overload was inhibited by autophagy inhibitors, indicating that ferroptosis caused by iron overload was autophagy-dependent. We also confirmed the effect of iron overload and autophagy on lesion growth in vivo by constructing a mouse EM model; the results were consistent with those of the in vitro experiments of human tissue and endometrial stomal cells. However, ectopic lesions in patients can resist ferroptosis caused by iron overload, which can promote cystine/glutamate transporter hyperexpression by highly expressing activating transcription factor 4 (ATF4). In summary, local iron overload in ovarian EM can activate autophagy-related ferroptosis in ESCs, and ectopic lesions grow in a high-iron environment via ATF4-xCT while resisting ferroptosis. The effects of iron overload on other cells in the EM environment require further study. This study deepens our understanding of the role of ferroptosis in ovarian EM.


Assuntos
Endometriose , Ferroptose , Sobrecarga de Ferro , Feminino , Animais , Camundongos , Humanos , Fator 4 Ativador da Transcrição/metabolismo , Endometriose/metabolismo , Ferroptose/genética , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Ferro/metabolismo , Autofagia/genética , Células Estromais/metabolismo
13.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014281

RESUMO

Hyperinflammation is the hallmark of Kaposi's sarcoma (KS), the most common cancer in AIDS patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. However, the role and mechanism of induction of inflammation in KS remain unclear. In a screening for inhibitors of KSHV-induced oncogenesis, over half of the identified candidates were anti-inflammatory agents including dexamethasone functions by activating glucocorticoid receptor (GR) signaling. Here, we examined the mechanism mediating KSHV-induced inflammation. We found that numerous inflammatory pathways were activated in KSHV-transformed cells. Particularly, interleukin-1 alpha (IL-1α) and IL-1 receptor antagonist (IL-1Ra) from the IL-1 family were the most induced and suppressed cytokines, respectively. We found that KSHV miRNAs mediated IL-1α induction while both miRNAs and vFLIP mediated IL-1Ra suppression. Furthermore, GR signaling was inhibited in KSHV-transformed cells, which was mediated by vFLIP and vCyclin. Dexamethasone treatment activated GR signaling, and inhibited cell proliferation and colony formation in soft agar of KSHV-transformed cells but had a minimal effect on matched primary cells. Consequently, dexamethasone suppressed the initiation and growth of KSHV-induced tumors in mice. Mechanistically, dexamethasone suppressed IL-1α but induced IL-1Ra expression. Treatment with recombinant IL-1α protein rescued the inhibitory effect of dexamethasone while overexpression of IL-1Ra caused a weak growth inhibition of KSHV-transformed cells. Furthermore, dexamethasone induced IκBα expression resulting in inhibition of NF-κB pathway and IL-1α expression. These results reveal an important role of IL-1 pathway in KSHV-induced inflammation and oncogenesis, which can be inhibited by dexamethasone-activated GR signaling, and identify IL-1-mediated inflammation as a potential therapeutic target for KSHV-induced malignancies.

14.
Thorac Cancer ; 14(31): 3108-3118, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37793977

RESUMO

BACKGROUND: This study aimed to establish a nomogram for predicting risk of recurrence and provide a model for decision-making between lobectomy and sublobar resection in patients with stage IA lung adenocarcinoma. METHODS: Patients diagnosed with stage IA lung adenocarcinoma (LUAD) between December 2010 and October 2018 from Cancer Hospital Chinese Academy of Medical Sciences were included. Patients were randomly assigned to training and validation cohorts, accounting for 70% and 30% of the total cases, respectively. We collected laboratory variables before surgery. Univariate and multivariate analyses were performed in the training cohort to identify variables significantly associated with recurrence-free survival (RFS) which were subsequently used to construct a nomogram. Validation was conducted in both cohorts. A receiver operating characteristic curve was used to determine the optional cutoff values of the scores calculated from the nomogram. Patients were then divided into low- and high-risk groups. Survival was performed to determine if the nomogram could guide the operation method. RESULTS: A total of 543 patients were included in this study. Gender, albumin level, carcinoembryonic antigen level and cytokeratin-19-fragment level were included in the nomogram. In both cohorts, the nomogram stratified the patients into high- and low-risk groups in terms of RFS. In particular, there was a significant difference in RFS between lobectomy and sublobar resection in the high-risk group. CONCLUSIONS: Gender, albumin level, carcinoembryonic antigen level and cytokeratin-19-fragment level are valuable markers in predicting recurrence and can guide surgical practice in patients with stage IA LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Nomogramas , Neoplasias Pulmonares/patologia , Antígeno Carcinoembrionário , Queratina-19 , Estadiamento de Neoplasias , Estudos Retrospectivos , Pneumonectomia/métodos , Adenocarcinoma de Pulmão/cirurgia , Adenocarcinoma de Pulmão/patologia , Albuminas
15.
Cell Death Dis ; 14(9): 591, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673880

RESUMO

Oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) consists of latent and lytic replication phases, both of which are important for the development of KSHV-related cancers. As one of the most abundant RNA modifications, N6-methyladenosine (m6A) and its related complexes regulate KSHV life cycle. However, the role of METTL16, a newly discovered RNA methyltransferase, in KSHV life cycle remains unknown. In this study, we have identified a suppressive role of METTL16 in KSHV lytic replication. METTL16 knockdown increased while METTL16 overexpression reduced KSHV lytic replication. METTL16 binding to and writing of m6A on MAT2A transcript are essential for its splicing, maturation and expression. As a rate-limiting enzyme in the methionine-S-adenosylmethionine (SAM) cycle, MAT2A catalyzes the conversion of L-methionine to SAM required for the transmethylation of protein, DNA and RNA, transamination of polyamines, and transsulfuration of cystathionine. Consequently, knockdown or chemical inhibition of MAT2A reduced intracellular SAM level and enhanced KSHV lytic replication. In contrast, SAM treatment was sufficient to inhibit KSHV lytic replication and reverse the effect of the enhanced KSHV lytic program caused by METTL16 or MAT2A knockdown. Mechanistically, METTL16 or MAT2A knockdown increased while SAM treatment decreased the intracellular reactive oxygen species level by altering glutathione level, which is essential for efficient KSHV lytic replication. These findings demonstrate that METTL16 suppresses KSHV lytic replication by modulating the SAM cycle to maintain intracellular SAM level and redox homeostasis, thus illustrating the linkage of KSHV life cycle with specific m6A modifications, and cellular metabolic and oxidative conditions.


Assuntos
Herpesvirus Humano 8 , S-Adenosilmetionina , Herpesvirus Humano 8/genética , Metionina , Cistationina , RNA
16.
Nat Commun ; 14(1): 3886, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391566

RESUMO

Addictive substance use impairs cognitive flexibility, with unclear underlying mechanisms. The reinforcement of substance use is mediated by the striatal direct-pathway medium spiny neurons (dMSNs) that project to the substantia nigra pars reticulata (SNr). Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs), which receive extensive striatal inhibition. Here, we hypothesized that increased dMSN activity induced by substance use inhibits CINs, reducing cognitive flexibility. We found that cocaine administration in rodents caused long-lasting potentiation of local inhibitory dMSN-to-CIN transmission and decreased CIN firing in the dorsomedial striatum (DMS), a brain region critical for cognitive flexibility. Moreover, chemogenetic and time-locked optogenetic inhibition of DMS CINs suppressed flexibility of goal-directed behavior in instrumental reversal learning tasks. Notably, rabies-mediated tracing and physiological studies showed that SNr-projecting dMSNs, which mediate reinforcement, sent axonal collaterals to inhibit DMS CINs, which mediate flexibility. Our findings demonstrate that the local inhibitory dMSN-to-CIN circuit mediates the reinforcement-induced deficits in cognitive flexibility.


Assuntos
Corpo Estriado , Reforço Psicológico , Preparações Farmacêuticas , Neurônios Colinérgicos , Cognição
17.
Reprod Biomed Online ; 47(3): 103231, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385897

RESUMO

RESEARCH QUESTION: Does iron overload in patients with endometriosis affect ovarian function? Can a method be developed to visually reflect this? DESIGN: Magnetic resonance imaging (MRI) R2* was used to evaluate the correlation between iron deposition of ovarian and anti-Müllerian hormone (AMH) in patients with endometriosis. All patients underwent T2* MRI scanning. Serum AMH levels were measured preoperatively. The area of focal iron deposition, iron content of the cystic fluid and AMH levels between the endometriosis and control groups were compared using non-parametric tests. The effects of iron overload on AMH secretion in mouse ovarian granulosa cells were investigated by adding different concentrations of ferric citrate to the medium. RESULTS: A significant difference was found between endometriosis and control groups in area of iron deposition (P < 0.0001), cystic fluid iron content (P < 0.0001), R2* of lesions (P < 0.0001) and R2* of the cystic fluid (P < 0.0001). Negative correlations were found between serum AMH levels and R2* of cystic lesions in patients with endometriosis aged 18-35 years (rs = -0.6484, P < 0.0001), and between serum AMH levels and R2* of cystic fluid (rs = -0.5074, P = 0.0050). Transcription level (P < 0.0005) and secretion level (P < 0.005) of AMH significantly decreased with the increase in iron exposure. CONCLUSION: Iron deposits can impair ovarian function, which is reflected in MRI R2*. Serum AMH levels and R2* of cystic lesions or fluid in patients aged 18-35 years had a negative correlation with endometriosis. R2* can be used to reflect the changes of ovarian function caused by iron deposition.


Assuntos
Endometriose , Neoplasias Ovarianas , Reserva Ovariana , Feminino , Humanos , Animais , Camundongos , Endometriose/patologia , Hormônio Antimülleriano , Imageamento por Ressonância Magnética , Ferro
18.
Bioinform Adv ; 3(1): vbad076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359725

RESUMO

Motivation: Large-scale genetic and pharmacologic dependency maps are generated to reveal genetic vulnerabilities and drug sensitivities of cancer. However, user-friendly software is needed to systematically link such maps. Results: Here, we present DepLink, a web server to identify genetic and pharmacologic perturbations that induce similar effects on cell viability or molecular changes. DepLink integrates heterogeneous datasets of genome-wide CRISPR loss-of-function screens, high-throughput pharmacologic screens and gene expression signatures of perturbations. The datasets are systematically connected by four complementary modules tailored for different query scenarios. It allows users to search for potential inhibitors that target a gene (Module 1) or multiple genes (Module 2), mechanisms of action of a known drug (Module 3) and drugs with similar biochemical features to an investigational compound (Module 4). We performed a validation analysis to confirm the capability of our tool to link the effects of drug treatments to knockouts of the drug's annotated target genes. By querying with a demonstrating example of CDK6, the tool identified well-studied inhibitor drugs, novel synergistic gene and drug partners and insights into an investigational drug. In summary, DepLink enables easy navigation, visualization and linkage of rapidly evolving cancer dependency maps. Availability and implementation: The DepLink web server, demonstrating examples and detailed user manual are available at https://shiny.crc.pitt.edu/deplink/. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

19.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902234

RESUMO

BG45 is a class Ⅰ histone deacetylase inhibitor (HDACI) with selectivity for HDAC3. Our previous study demonstrated that BG45 can upregulate the expression of synaptic proteins and reduce the loss of neurons in the hippocampus of APPswe/PS1dE9 (APP/PS1) transgenic mice (Tg). The entorhinal cortex is a pivotal region that, along with the hippocampus, plays a critical role in memory in the Alzheimer's disease (AD) pathology process. In this study, we focused on the inflammatory changes in the entorhinal cortex of APP/PS1 mice and further explored the therapeutic effects of BG45 on the pathologies. The APP/PS1 mice were randomly divided into the transgenic group without BG45 (Tg group) and the BG45-treated groups. The BG45-treated groups were treated with BG45 at 2 months (2 m group), at 6 months (6 m group), or twice at 2 and 6 months (2 and 6 m group). The wild-type mice group (Wt group) served as the control. All mice were killed within 24 h after the last injection at 6 months. The results showed that amyloid-ß (Aß) deposition and IBA1-positive microglia and GFAP-positive astrocytes in the entorhinal cortex of the APP/PS1 mice progressively increased over time from 3 to 8 months of age. When the APP/PS1 mice were treated with BG45, the level of H3K9K14/H3 acetylation was improved and the expression of histonedeacetylase1, histonedeacetylase2, and histonedeacetylase3 was inhibited, especially in the 2 and 6 m group. BG45 alleviated Aß deposition and reduced the phosphorylation level of tau protein. The number of IBA1-positive microglia and GFAP-positive astrocytes decreased with BG45 treatment, and the effect was more significant in the 2 and 6 m group. Meanwhile, the expression of synaptic proteins synaptophysin, postsynaptic density protein 95, and spinophilin was upregulated and the degeneration of neurons was alleviated. Moreover, BG45 reduced the gene expression of inflammatory cytokines interleukin-1ß and tumor necrosis factor-α. Closely related to the CREB/BDNF/NF-kB pathway, the expression of p-CREB/CREB, BDNF, and TrkB was increased in all BG45 administered groups compared with the Tg group. However, the levels of p-NF-kB/NF-kB in the BG45 treatment groups were reduced. Therefore, we deduced that BG45 is a potential drug for AD by alleviating inflammation and regulating the CREB/BDNF/NF-kB pathway, and the early, repeated administration of BG45 can play a more effective role.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Córtex Entorrinal , Inibidores de Histona Desacetilases , Inflamação , Microglia , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Córtex Entorrinal/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Camundongos Transgênicos , Microglia/metabolismo , NF-kappa B/metabolismo , Presenilina-1/genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico
20.
mBio ; 14(1): e0334922, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36625590

RESUMO

Mitogen-activated protein kinases (MAPKs) play critical roles in the induction of numerous cytokines, chemokines, and inflammatory mediators that mobilize the immune system to counter pathogenic infections. Dual-specificity phosphatase 1 (DUSP1) is a member of the dual-specificity phosphatases that inactivates MAPKs through a negative-feedback mechanism. Here, we report that in response to viral and bacterial infections, not only the DUSP1 transcript but also its N6-methyladenosine (m6A) levels rapidly increase together with that of the m6A reader protein YTHDF2, resulting in enhanced YTHDF2-mediated DUSP1 transcript degradation. The knockdown of DUSP1 promotes p38 and Jun N-terminal kinase (JNK) phosphorylation and activation, thus increasing the expression of innate immune response genes, including the interleukin-1ß (IL-1ß), colony-stimulating factor 3 (CSF3), transglutaminase 2 (TGM2), and proto-oncogene tyrosine-protein kinase Src (SRC) genes. Similarly, the knockdown of the m6A eraser ALKBH5 increases the DUSP1 transcript m6A level, resulting in accelerated transcript degradation, the activation of p38 and JNK, and the enhanced expression of IL-1ß, CSF3, TGM2, and SRC. These results demonstrate that m6A and the reader protein YTHDF2 orchestrate optimal innate immune responses during viral and bacterial infections by downregulating the expression of a negative regulator, DUSP1, of the p38 and JNK pathways that are central to innate immune responses against pathogenic infections. IMPORTANCE Innate immunity is central to controlling pathogenic infections and maintaining the homeostasis of the host. In this study, we have revealed a novel mechanism regulating innate immune responses during viral and bacterial infections. We have found that N6-methyladenosine (m6A) and the reader protein YTHDF2 regulate dual-specificity phosphatase 1, a negative regulator of the mitogen-activated protein kinases p38 and JNK, to maximize innate immune responses during viral and bacterial infections. These results provide novel insights into the mechanism regulating innate immunity, which could help in the development of novel approaches for controlling pathogenic infections.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Viroses , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Imunidade Inata/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA