Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Thorac Cardiovasc Surg ; 143(3): 720-726.e3, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22143102

RESUMO

OBJECTIVE: Genetic modulation of heart function is a novel therapeutic strategy. We investigated the effect of molecular cardiac surgery with recirculating delivery (MCARD)-mediated carboxyl-terminus of the ß-adrenergic receptor kinase (ßARKct) gene transfer on cardiac mechanoenergetics and ß-adrenoreceptor (ßAR) signaling. METHODS: After baseline measurements, sheep underwent MCARD-mediated delivery of 10(14) genome copies of self-complimentary adeno-associated virus (scAAV6)-ßARKct. Four and 8 weeks after MCARD, mechanoenergetic studies using magnetic resonance imaging were performed. Tissues were analyzed with real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. ßAR density, cyclic adenosine monophosphate levels, and physiologic parameters were evaluated. RESULTS: There was a significant increase in dP/dt(max) at 4 weeks: 1384 ± 76 versus 1772 ± 182 mm Hg/s; and the increase persisted at 8 weeks in response to isoproterenol (P < .05). Similarly, the magnitude of dP/dt(min) increased at both 4 weeks and 8 weeks with isoproterenol stimulation (P < .05). At 8 weeks, potential energy was conserved, whereas in controls there was a decrease in potential energy (P < .05) in response to isoproterenol. RT-qPCR confirmed robustness of ßARKct expression throughout the left ventricle and undetectable expression in extracardiac tissues. Quantitative Western blot data confirmed higher expression of ßARKct in the left ventricle: 0.46 ± 0.05 versus 0.00 in lung and liver (P < .05). Survival was 100% and laboratory parameters of major organ function were within normal limits. CONCLUSIONS: MCARD-mediated ßARKct delivery is safe, results in robust cardiac-specific gene expression, enhances cardiac contractility and lusitropy, increases adrenergic reserve, and improves energy utilization efficiency in a preclinical large animal model.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Ventrículos do Coração/enzimologia , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Quinases de Receptores Adrenérgicos beta/biossíntese , Agonistas Adrenérgicos beta/farmacologia , Animais , Western Blotting , AMP Cíclico/metabolismo , Ecocardiografia Doppler , Regulação da Expressão Gênica , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/efeitos dos fármacos , Hemodinâmica , Isoproterenol/farmacologia , Imageamento por Ressonância Magnética , Masculino , Contração Miocárdica , Reação em Cadeia da Polimerase em Tempo Real , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores Adrenérgicos beta/genética , Ovinos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Pressão Ventricular , Quinases de Receptores Adrenérgicos beta/genética
2.
Circ Res ; 107(12): 1445-53, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20966393

RESUMO

RATIONALE: coronary artery ligation to induce myocardial infarction (MI) in mice is typically performed by an invasive and time-consuming approach that requires ventilation and chest opening (classic method), often resulting in extensive tissue damage and high mortality. We developed a novel and rapid surgical method to induce MI that does not require ventilation. OBJECTIVE: the purpose of this study was to develop and comprehensively describe this method and directly compare it to the classic method. METHODS AND RESULTS: male C57/B6 mice were grouped into 4 groups: new method MI (MI-N) or sham (S-N) and classic method MI (MI-C) or sham (S-C). In the new method, heart was manually exposed without intubation through a small incision and MI was induced. In the classic method, MI was induced through a ventilated thoracotomy. Similar groups were used in an ischemia/reperfusion injury model. This novel MI procedure is rapid, with an average procedure time of 1.22 ± 0.05 minutes, whereas the classic method requires 23.2 ± 0.6 minutes per procedure. Surgical mortality was 3% in MI-N and 15.9% in MI-C. The rate of arrhythmia was significantly lower in MI-N. The postsurgical levels of tumor necrosis factor-α and myeloperoxidase were lower in new method, indicating less inflammation. Overall, 28-day post-MI survival rate was 68% with MI-N and 48% with MI-C. Importantly, there was no difference in infarct size or post-MI cardiac function between the methods. CONCLUSIONS: this new rapid method of MI in mice represents a more efficient and less damaging model of myocardial ischemic injury compared with the classic method.


Assuntos
Vasos Coronários/cirurgia , Modelos Animais de Doenças , Infarto do Miocárdio/etiologia , Projetos de Pesquisa/normas , Animais , Ligadura/efeitos adversos , Ligadura/métodos , Masculino , Métodos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
3.
Acta Pharmacol Sin ; 26(3): 265-78, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15715921

RESUMO

In comparison to cation (K+, Na+, and Ca2+) channels, much less is currently known about the functional role of anion (Cl-) channels in cardiovascular physiology and pathophysiology. Over the past 15 years, various types of Cl- currents have been recorded in cardiac cells from different species including humans. All cardiac Cl- channels described to date may be encoded by five different Cl- channel genes: the PKA- and PKC-activated cystic fibrosis tansmembrane conductance regulator (CFTR), the volume-regulated ClC-2 and ClC-3, and the Ca2+-activated CLCA or Bestrophin. Recent studies using multiple approaches to examine the functional role of Cl- channels in the context of health and disease have demonstrated that Cl- channels might contribute to: 1) arrhythmogenesis in myocardial injury; 2) cardiac ischemic preconditioning; and 3) the adaptive remodeling of the heart during myocardial hypertrophy and heart failure. Therefore, anion channels represent very attractive novel targets for therapeutic approaches to the treatment of heart diseases. Recent evidence suggests that Cl- channels, like cation channels, might function as a multiprotein complex or functional module. In the post-genome era, the emergence of functional proteomics has necessitated a new paradigm shift to the structural and functional assessment of integrated Cl- channel multiprotein complexes in the heart, which could provide new insight into our understanding of the underlying mechanisms responsible for heart disease and protection.


Assuntos
Arritmias Cardíacas/fisiopatologia , Cardiomegalia/fisiopatologia , Canais de Cloreto/fisiologia , Precondicionamento Isquêmico , Animais , Arritmias Cardíacas/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA