Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167057, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38331111

RESUMO

During inguinal adipose tissue (iWAT) ontogenesis, beige adipocytes spontaneously appear between postnatal 10 (P10) and P20 and their ablation impairs iWAT browning capacity in adulthood. Since maternal obesity has deleterious effects on offspring iWAT function, we aimed to investigate its effect in spontaneous iWAT browning in offspring. Female C57BL/6 J mice were fed a control or obesogenic diet six weeks before mating. Male and female offspring were euthanized at P10 and P20 or weaned at P21 and fed chow diet until P60. At P50, mice were treated with saline or CL316,243, a ß3-adrenoceptor agonist, for ten days. Maternal obesity induced insulin resistance at P60, and CL316,243 treatment effectively restored insulin sensitivity in male but not female offspring. This discrepancy occurred due to female offspring severe browning impairment. During development, the spontaneous iWAT browning and sympathetic nerve branching at P20 were severely impaired in female obese dam's offspring but occurred normally in males. Additionally, maternal obesity increased miR-22 expression in the iWAT of male and female offspring during development. ERα, a target and regulator of miR-22, was concomitantly upregulated in the male's iWAT. Next, we evaluated miR-22 knockout (KO) offspring at P10 and P20. The miR-22 deficiency does not affect spontaneous iWAT browning in females and, surprisingly, anticipates iWAT browning in males. In conclusion, maternal obesity impairs functional iWAT development in the offspring in a sex-specific way that seems to be driven by miR-22 levels and ERα signaling. This impacts adult browning capacity and glucose homeostasis, especially in female offspring.


Assuntos
Adipócitos Bege , MicroRNAs , Obesidade Materna , Animais , Feminino , Masculino , Camundongos , Gravidez , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade Materna/metabolismo
2.
Cardiovasc Res ; 119(8): 1763-1779, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-36943764

RESUMO

AIMS: The plasticity of vascular smooth muscle cells (VSMCs) enables them to alter phenotypes under various physiological and pathological stimuli. The alteration of VSMC phenotype is a key step in vascular diseases, including atherosclerosis. Although the transcriptome shift during VSMC phenotype alteration has been intensively investigated, uncovering multiple key regulatory signalling pathways, the translatome dynamics in this cellular process, remain largely unknown. Here, we explored the genome-wide regulation at the translational level of human VSMCs during phenotype alteration. METHODS AND RESULTS: We generated nucleotide-resolution translatome and transcriptome data from human VSMCs undergoing phenotype alteration. Deep sequencing of ribosome-protected fragments (Ribo-seq) revealed alterations in protein synthesis independent of changes in messenger ribonucleicacid levels. Increased translational efficiency of many translational machinery components, including ribosomal proteins, eukaryotic translation elongation factors and initiation factors were observed during the phenotype alteration of VSMCs. In addition, hundreds of candidates for short open reading frame-encoded polypeptides (SEPs), a class of peptides containing 200 amino acids or less, were identified in a combined analysis of translatome and transcriptome data with a high positive rate in validating their coding capability. Three evolutionarily conserved SEPs were further detected endogenously by customized antibodies and suggested to participate in the pathogenesis of atherosclerosis by analysing the transcriptome and single cell RNA-seq data from patient atherosclerotic artery samples. Gain- and loss-of-function studies in human VSMCs and genetically engineered mice showed that these SEPs modulate the alteration of VSMC phenotype through different signalling pathways, including the mitogen-activated protein kinase pathway and p53 pathway. CONCLUSION: Our study indicates that an increase in the capacity of translation, which is attributable to an increased quantity of translational machinery components, mainly controls alterations of VSMC phenotype at the level of translational regulation. In addition, SEPs could function as important regulators in the phenotype alteration of human VSMCs.


Assuntos
Aterosclerose , Músculo Liso Vascular , Camundongos , Animais , Humanos , Músculo Liso Vascular/metabolismo , Fases de Leitura Aberta , Células Cultivadas , Fenótipo , Aterosclerose/patologia , Peptídeos/genética , Miócitos de Músculo Liso/metabolismo , Proliferação de Células
3.
Front Cardiovasc Med ; 9: 852775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295259

RESUMO

Enhancement of protein synthesis from mRNA translation is one of the key steps supporting cardiomyocyte hypertrophy during cardiac remodeling. The methyltransferase-like5 (METTL5), which catalyzes m6A modification of 18S rRNA at position A1832, has been shown to regulate the efficiency of mRNA translation during the differentiation of ES cells and the growth of cancer cells. It remains unknown whether and how METTL5 regulates cardiac hypertrophy. In this study, we have generated a mouse model, METTL5-cKO, with cardiac-specific depletion of METTL5 in vivo. Loss function of METTL5 promotes pressure overload-induced cardiomyocyte hypertrophy and adverse remodeling. The regulatory function of METTL5 in hypertrophic growth of cardiomyocytes was further confirmed with both gain- and loss-of-function approaches in primary cardiomyocytes. Mechanically, METTL5 can modulate the mRNA translation of SUZ12, a core component of PRC2 complex, and further regulate the transcriptomic shift during cardiac hypertrophy. Altogether, our study may uncover an important translational regulator of cardiac hypertrophy through m6A modification.

4.
Nat Commun ; 11(1): 4666, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938943

RESUMO

Intercalated discs (ICD), specific cell-to-cell contacts that connect adjacent cardiomyocytes, ensure mechanical and electrochemical coupling during contraction of the heart. Mutations in genes encoding ICD components are linked to cardiovascular diseases. Here, we show that loss of Xinß, a newly-identified component of ICDs, results in cardiomyocyte proliferation defects and cardiomyopathy. We uncovered a role for Xinß in signaling via the Hippo-YAP pathway by recruiting NF2 to the ICD to modulate cardiac function. In Xinß mutant hearts levels of phosphorylated NF2 are substantially reduced, suggesting an impairment of Hippo-YAP signaling. Cardiac-specific overexpression of YAP rescues cardiac defects in Xinß knock-out mice-indicating a functional and genetic interaction between Xinß and YAP. Our study reveals a molecular mechanism by which cardiac-expressed intercalated disc protein Xinß modulates Hippo-YAP signaling to control heart development and cardiac function in a tissue specific manner. Consequently, this pathway may represent a therapeutic target for the treatment of cardiovascular diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas com Domínio LIM/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cardiomiopatia Dilatada/genética , Comunicação Celular , Proteínas de Ciclo Celular/genética , Proliferação de Células , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/crescimento & desenvolvimento , Via de Sinalização Hippo , Proteínas com Domínio LIM/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais , Proteínas de Sinalização YAP
5.
Hypertension ; 75(1): 79-90, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735087

RESUMO

Transcribed ultraconserved regions (T-UCRs) are a novel class of long noncoding RNAs transcribed from UCRs, which exhibit 100% DNA sequence conservation among humans, mice, and rats. However, whether T-UCRs regulate cardiac hypertrophy remains unclear. We aimed to explore the effects of T-UCRs on cardiac hypertrophy. First, we performed long noncoding RNA microarray analysis on hearts of mice subjected to sham surgery or aortic banding and found that the T-UCR uc.323 was decreased significantly in mice with aortic banding-induced cardiac hypertrophy. In vitro loss- and gain-of-function experiments demonstrated that uc.323 protected cardiomyocytes against hypertrophy induced by phenylephrine. Additionally, we discovered that mammalian target of rapamycin 1 contributed to phenylephrine-induced uc.323 downregulation and uc.323-mediated cardiomyocyte hypertrophy. We further mapped the possible target genes of uc.323 through global microarray mRNA expression analysis after uc.323 knockdown and found that uc.323 regulated the expression of cardiac hypertrophy-related genes such as CPT1b (Carnitine Palmitoyl transferase 1b). Then, chromatin immunoprecipitation proved that EZH2 (enhancer of zeste homolog 2) bound to the promoter of CPT1b via H3K27me3 (trimethylation of lysine 27 of histone H3) to induce CPT1b downregulation. And overexpression of CPT1b could block uc.323-mediated cardiomyocyte hypertrophy. Finally, we found that uc.323 deficiency induced cardiac hypertrophy. Our results reveal that uc.323 is a conserved T-UCR that inhibits cardiac hypertrophy, potentially by regulating the transcription of CPT1b via interaction with EZH2.


Assuntos
Cardiomegalia/genética , Carnitina O-Palmitoiltransferase/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Miocárdio/metabolismo , RNA Longo não Codificante/genética , Animais , Cardiomegalia/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Sequência Conservada , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/metabolismo , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica
6.
Theranostics ; 9(24): 7268-7281, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695767

RESUMO

Rationale: An imbalance between protein synthesis and degradation is one of the mechanisms of cardiac hypertrophy. Increased transcription in cardiomyocytes can lead to excessive protein synthesis and cardiac hypertrophy. Maf1 is an RNA polymerase III (RNA pol III) inhibitor that plays a pivotal role in regulating transcription. However, whether Maf1 regulates of cardiac hypertrophy remains unclear. Methods: Cardiac hypertrophy was induced in vivo by thoracic aortic banding (AB) surgery. Both the in vivo and in vitro gain- and loss-of-function experiments by Maf1 knockout (KO) mice and adenoviral transfection were used to verify the role of Maf1 in cardiac hypertrophy. RNA pol III and ERK1/2 inhibitor were utilized to identify the effects of RNA pol III and ERK1/2. The possible interaction between Maf1 and ERK1/2 was clarified by immunoprecipitation (IP) analysis. Results: Four weeks after surgery, Maf1 KO mice exhibited significantly exacerbated AB-induced cardiac hypertrophy characterized by increased heart size, cardiomyocyte surface area, and atrial natriuretic peptide (ANP) expression and by exacerbated pulmonary edema. Also, the deficiency of Maf1 causes more severe cardiac dilation and dysfunction than wild type (WT) mice after pressure overload. In contrast, compared with adenoviral-GFP injected mice, mice injected with adenoviral-Maf1 showed significantly ameliorated AB-induced cardiac hypertrophy. In vitro study has demonstrated that Maf1 could significantly block phenylephrine (PE)-induced cardiomyocyte hypertrophy by inhibiting RNA pol III transcription. However, application of an RNA pol III inhibitor markedly improved Maf1 knockdown-promoted cardiac hypertrophy. Moreover, ERK1/2 was identified as a regulator of RNA pol III, and ERK1/2 inhibition by U0126 significantly repressed Maf1 knockdown-promoted cardiac hypertrophy accompanied by suppressed RNA pol III transcription. Additionally, IP analysis demonstrated that Maf1 could directly bind ERK1/2, suggesting Maf1 could interact with ERK1/2 and then inhibit RNA pol III transcription so as to attenuate the development of cardiac hypertrophy. Conclusions: Maf1 ameliorates PE- and AB-induced cardiac hypertrophy by inhibiting RNA pol III transcription via ERK1/2 signaling suppression.


Assuntos
Cardiomegalia/metabolismo , RNA Polimerase III/metabolismo , Proteínas Repressoras/metabolismo , Animais , Cardiomegalia/etiologia , Cardiomegalia/genética , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenilefrina/efeitos adversos , RNA Polimerase III/antagonistas & inibidores , RNA Polimerase III/genética , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética
7.
Nat Commun ; 10(1): 1802, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996254

RESUMO

The primary cause of heart failure is the loss of cardiomyocytes in the diseased adult heart. Previously, we reported that the miR-17-92 cluster plays a key role in cardiomyocyte proliferation. Here, we report that expression of miR-19a/19b, members of the miR-17-92 cluster, is induced in heart failure patients. We show that intra-cardiac injection of miR-19a/19b mimics enhances cardiomyocyte proliferation and stimulates cardiac regeneration in response to myocardial infarction (MI) injury. miR-19a/19b protected the adult heart in two distinctive phases: an early phase immediately after MI and long-term protection. Genome-wide transcriptome analysis demonstrates that genes related to the immune response are repressed by miR-19a/19b. Using an adeno-associated virus approach, we validate that miR-19a/19b reduces MI-induced cardiac damage and protects cardiac function. Finally, we confirm the therapeutic potential of miR-19a/19b in protecting cardiac function by systemically delivering miR-19a/19b into mice post-MI. Our study establishes miR-19a/19b as potential therapeutic targets to treat heart failure.


Assuntos
Terapia Genética/métodos , Insuficiência Cardíaca/patologia , MicroRNAs/administração & dosagem , MicroRNAs/metabolismo , Infarto do Miocárdio/terapia , Animais , Proliferação de Células/genética , Dependovirus/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Insuficiência Cardíaca/terapia , Ventrículos do Coração/patologia , Humanos , Injeções Intralesionais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Regeneração/genética
8.
Bone Res ; 6: 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29644114

RESUMO

Osteosarcoma is the most common primary bone sarcoma that mostly occurs in young adults. The causes of osteosarcoma are heterogeneous and still not fully understood. Identification of novel, important oncogenic factors in osteosarcoma and development of better, effective therapeutic approaches are in urgent need for better treatment of osteosarcoma patients. In this study, we uncovered that the oncogene MYC is significantly upregulated in metastastic osteosarcoma samples. In addition, high MYC expression is associated with poor survival of osteosarcoma patients. Analysis of MYC targets in osteosarcoma revealed that most of the osteosarcoma super enhancer genes are bound by MYC. Treatment of osteosarcoma cells with super enhancer inhibitors THZ1 and JQ1 effectively suppresses the proliferation, migration, and invasion of osteosarcoma cells. Mechanistically, THZ1 treatment suppresses a large group of super enhancer containing MYC target genes including CDK6 and TGFB2. These findings revealed that the MYC-driven super enhancer signaling is crucial for the osteosarcoma tumorigenesis and targeting the MYC/super enhancer axis represents as a promising therapeutic strategy for treatment of osteosarcoma patients.

9.
J Clin Invest ; 125(11): 4122-34, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26436652

RESUMO

Cardiomyopathy is a common human disorder that is characterized by contractile dysfunction and cardiac remodeling. Genetic mutations and altered expression of genes encoding many signaling molecules and contractile proteins are associated with cardiomyopathy; however, how cardiomyocytes sense pathophysiological stresses in order to then modulate cardiac remodeling remains poorly understood. Here, we have described a regulator in the heart that harmonizes the progression of cardiac hypertrophy and dilation. We determined that expression of the myocyte-enriched protein cardiac ISL1-interacting protein (CIP, also known as MLIP) is reduced in patients with dilated cardiomyopathy. As CIP is highly conserved between human and mouse, we evaluated the effects of CIP deficiency on cardiac remodeling in mice. Deletion of the CIP-encoding gene accelerated progress from hypertrophy to heart failure in several cardiomyopathy models. Conversely, transgenic and AAV-mediated CIP overexpression prevented pathologic remodeling and preserved cardiac function. CIP deficiency combined with lamin A/C deletion resulted in severe dilated cardiomyopathy and cardiac dysfunction in the absence of stress. Transcriptome analyses of CIP-deficient hearts revealed that the p53- and FOXO1-mediated gene networks related to homeostasis are disturbed upon pressure overload stress. Moreover, FOXO1 overexpression suppressed stress-induced cardiomyocyte hypertrophy in CIP-deficient cardiomyocytes. Our studies identify CIP as a key regulator of cardiomyopathy that has potential as a therapeutic target to attenuate heart failure progression.


Assuntos
Cardiomegalia/fisiopatologia , Proteínas Nucleares/deficiência , Animais , Calcineurina/fisiologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Proteínas Correpressoras , Modelos Animais de Doenças , Progressão da Doença , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/fisiologia , Redes Reguladoras de Genes , Terapia Genética , Vetores Genéticos/uso terapêutico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Homeostase , Humanos , Lamina Tipo A/biossíntese , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Pressão/efeitos adversos , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Estresse Mecânico , Transcriptoma , Remodelação Ventricular/fisiologia
10.
Circulation ; 130(17): 1452-1465, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25156994

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have recently been implicated in many biological processes and diseases. Atherosclerosis is a major risk factor for cardiovascular disease. However, the functional role of lncRNAs in atherosclerosis is largely unknown. METHODS AND RESULTS: We identified lincRNA-p21 as a key regulator of cell proliferation and apoptosis during atherosclerosis. The expression of lincRNA-p21 was dramatically downregulated in atherosclerotic plaques of ApoE(-/-) mice, an animal model for atherosclerosis. Through loss- and gain-of-function approaches, we showed that lincRNA-p21 represses cell proliferation and induces apoptosis in vascular smooth muscle cells and mouse mononuclear macrophage cells in vitro. Moreover, we found that inhibition of lincRNA-p21 results in neointimal hyperplasia in vivo in a carotid artery injury model. Genome-wide analysis revealed that lincRNA-p21 inhibition dysregulated many p53 targets. Furthermore, lincRNA-p21, a transcriptional target of p53, feeds back to enhance p53 transcriptional activity, at least in part, via binding to mouse double minute 2 (MDM2), an E3 ubiquitin-protein ligase. The association of lincRNA-p21 and MDM2 releases MDM2 repression of p53, enabling p53 to interact with p300 and to bind to the promoters/enhancers of its target genes. Finally, we show that lincRNA-p21 expression is decreased in patients with coronary artery disease. CONCLUSIONS: Our studies identify lincRNA-p21 as a novel regulator of cell proliferation and apoptosis and suggest that this lncRNA could serve as a therapeutic target to treat atherosclerosis and related cardiovascular disorders.


Assuntos
Apoptose/genética , Macrófagos/citologia , Músculo Liso Vascular/citologia , Neointima/genética , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Humanos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/fisiologia , Neointima/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética
11.
Circ Res ; 112(12): 1557-66, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23575307

RESUMO

RATIONALE: Cardiomyocytes in adult mammalian hearts are terminally differentiated cells that have exited from the cell cycle and lost most of their proliferative capacity. Death of mature cardiomyocytes in pathological cardiac conditions and the lack of regeneration capacity of adult hearts are primary causes of heart failure and mortality. However, how cardiomyocyte proliferation in postnatal and adult hearts becomes suppressed remains largely unknown. The miR-17-92 cluster was initially identified as a human oncogene that promotes cell proliferation. However, its role in the heart remains unknown. OBJECTIVE: To test the hypothesis that miR-17-92 participates in the regulation of cardiomyocyte proliferation in postnatal and adult hearts. METHODS AND RESULTS: We deleted miR-17-92 cluster from embryonic and postnatal mouse hearts and demonstrated that miR-17-92 is required for cardiomyocyte proliferation in the heart. Transgenic overexpression of miR-17-92 in cardiomyocytes is sufficient to induce cardiomyocyte proliferation in embryonic, postnatal, and adult hearts. Moreover, overexpression of miR-17-92 in adult cardiomyocytes protects the heart from myocardial infarction-induced injury. Similarly, we found that members of miR-17-92 cluster, miR-19 in particular, are required for and sufficient to induce cardiomyocyte proliferation in vitro. We identified phosphatase and tensin homolog, a tumor suppressor, as an miR-17-92 target to mediate the function of miR-17-92 in cardiomyocyte proliferation. CONCLUSIONS: Our studies therefore identify miR-17-92 as a critical regulator of cardiomyocyte proliferation, and suggest this cluster of microRNAs could become therapeutic targets for cardiac repair and heart regeneration.


Assuntos
Proliferação de Células , Coração/embriologia , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/genética , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Interferência de RNA , Ratos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Ultrassonografia
12.
Arterioscler Thromb Vasc Biol ; 31(2): 368-75, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21051663

RESUMO

OBJECTIVE: Myocardin is a cardiac- and smooth muscle-specific transcription co-factor that potently activates the expression of downstream target genes. Previously, we demonstrated that overexpression of myocardin inhibited the proliferation of smooth muscle cells (SMCs). Recently, myocardin was reported to induce the expression of microRNA-1 (miR-1) in cardiomyocytes. In this study, we investigated whether myocardin induces miR-1 expression to mediate its inhibitory effects on SMC proliferation. METHODS AND RESULTS: Using tetracycline-regulated expression (T-REx) inducible system expressing myocardin in human vascular SMCs, we found that overexpression of myocardin resulted in significant induction of miR-1 expression and inhibition of SMC proliferation, which was reversed by miR-1 inhibitors. Consistently, introduction of miR-1 into SMCs inhibited their proliferation. We isolated spindle-shaped and epithelioid human SMCs and demonstrated that spindle-shaped SMCs were more differentiated and less proliferative. Correspondingly, spindle-shaped SMCs had significantly higher expression levels of both myocardin and miR-1 than epithelioid SMCs. We identified Pim-1, a serine/threonine kinase, as a target gene for miR-1 in SMCs. Western blot and luciferase reporter assays further confirmed that miR-1 targeted Pim-1 directly. Furthermore, neointimal lesions of mouse carotid arteries displayed downregulation of myocardin and miR-1 with upregulation of Pim-1. CONCLUSIONS: Our data demonstrate that miR-1 participates in myocardin-dependent of SMC proliferation inhibition.


Assuntos
Proliferação de Células , MicroRNAs/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Aorta/citologia , Aorta/metabolismo , Artérias Carótidas/citologia , Artérias Carótidas/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação para Baixo/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA