Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 255: 121476, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503181

RESUMO

Industrial mariculture, a vital means of providing high quality protein to humans, is a potential source of microplastics (MPs) which have recently received increasing attention. This study investigated the occurrence and distribution of microplastics in feed, source water and recirculating aquaculture system (RAS) with long & short operating times as well as in fish from typical industrial mariculture farms in China. Results showed that microplastics occurred in all samples with the average concentration of 3.53 ± 1.39 particles/g, 0.70 ± 0.17 particles/L, 1.53 ± 0.21 particles/L and 2.21 ± 0.62 particles/individual for feed, source water, RAS and fish, respectively. Microplastics were mainly fiber in shape, blue in color and 20-500 µm in size. Compared with short operated RAS, long operating time led to higher microplastic concentration in RAS, especially that of microplastic in 20-500 µm, granular and blue. Regardless of short or long operating time, microplastics in RAS mainly gathered in culture tank, tank before microfilter and fixed-bed biological filter, and the microfilter removed efficiently the microplastic with the shape of film, granule, fragment as well as those with size > 1000 µm. As for the polymer types, polyamide (PA, 71.9 %) and polyethylene terephthalate (PET, 65.7 %) dominated in feed and source water, respectively, which may be the reason for the high proportion of PA (38.8 % and 26.4 %) and PET (31.8 % and 30.2 %) in RAS and fish. In addition, polypropylene (PP) was also detected in RAS (18.7 %) and fish (22.6 %), indicating that other plastic facilities such as PP brush carrier also made a contribution. Positive matrix factorization (PMF) model revealed three sources of MP in RAS, namely plastic facilities, industrial sewage and plastic packaging products. Our results provided a theoretical basis for the management of MP in RAS.

2.
Nat Commun ; 13(1): 6502, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316334

RESUMO

The mechanisms underlying fibrogenic responses after injury are not well understood. Epithelial cell cycle arrest in G2/M after injury is a key checkpoint for determining wound-healing leading to either normal cell proliferation or fibrosis. Here, we identify a kidney- and liver-enriched circular RNA, circBNC2, which is abundantly expressed in normal renal tubular cells and hepatocytes but significantly downregulated after acute ischemic or toxic insult. Loss of circBNC2 is at least partially mediated by upregulation of DHX9. Gain- and loss-of-function studies, both in vitro and in vivo, demonstrate that circBNC2 acts as a negative regulator of cell G2/M arrest by encoding a protein that promotes formation of CDK1/cyclin B1 complexes. Restoring circBNC2 in experimentally-induced male mouse models of fibrotic kidney and liver, decreases G2/M arrested cell numbers with secretion of fibrotic factors, thereby mitigating extracellular matrix deposition and fibrosis. Decreased expression of circBNC2 and increased G2/M arrest of epithelial cells are recapitulated in human ischemic reperfusion injury (IRI)-induced chronic kidney disease and inflammation-induced liver fibrosis, highlighting the clinical relevance. These findings suggest that restoring circBNC2 might represent a potential strategy for therapeutic intervention in epithelial organ fibrosis.


Assuntos
RNA Circular , Insuficiência Renal Crônica , Camundongos , Animais , Masculino , Humanos , RNA Circular/genética , Apoptose , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Linhagem Celular Tumoral , Fibrose , Células Epiteliais/metabolismo , Insuficiência Renal Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA