Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1166796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621691

RESUMO

Objective: To explore the value of testing methylated SDC2 (SDC2) in stool DNA combined with fecal immunochemical test (FIT) and serum tumor markers (TM) for the early detection of colorectal neoplasms. Methods: A total of 533 patients, including 150 with CRC (67 with early-stage CRC), 23 with APL, 85 with non-advanced adenomas and general polyps, and 275 with benign lesions and healthy controls. SDC2 was detected by methylation-specific PCR, FIT (hemoglobin, Hb and transferrin, TF) was detected by immunoassay, and the relationships between SDC2, FIT, and clinicopathological features were analyzed. Pathological biopsy or colonoscopy were used as gold standards for diagnosis, and the diagnostic efficacy of SDC2 combined with FIT and TM in CRC and APL evaluated using receiver operating characteristic (ROC) curves. Results: SDC2 positive rates in early-stage CRC and APL were 77.6% (38/49) and 41.2% (7/17), respectively, and combination of SDC2 with FIT increased the positive rates to 98.0% (48/49) and 82.4% (14/17). The positive rates of SDC2 combined with FIT assay in the APL and CRC groups at stages 0-IV were 82.4% (14/17), 85.7% (6/7), 100% (16/16), 100% (26/26), 97.4% (38/39), and 100% (22/22), respectively. Compared to the controls, both the CRC and APL groups showed significantly higher positive detection rates of fecal SDC2 and FIT (χ2 = 114.116, P < 0.0001 and χ2 = 85.409, P < 0.0001, respectively). Our results demonstrate a significant difference in the qualitative methods of SDC2 and FIT for the detection of colorectal neoplasms (McNemar test, P < 0.0001). ROC curve analysis revealed that the sensitivities of SDC2 and FIT, alone or in combination, for the detection of early CRC and APL were 69.9%, 86.3%, and 93.9%, respectively (all P<0.0001). When combined with CEA, the sensitivity increased to 97.3% (P<0.0001). Conclusions: SDC2 facilitates colorectal neoplasms screening, and when combined with FIT, it enhances detection. Furthermore, the combination of SDC2 with FIT and CEA maximizes overall colorectal neoplasm detection.

2.
Clin Lab ; 69(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436374

RESUMO

BACKGROUND: The similarity between Crohn's disease (CD) and non-CD, especially with ulcerative colitis (UC) or intestinal tuberculosis (ITB), makes the diagnostic error rate not low. Therefore, there is an urgent need for an efficient, fast, and simple predictive model that can be applied in clinical practice. The purpose of this study is to establish the risk prediction model for CD based on five routine laboratory tests by logistic-regression algorithm, to construct the early warning model for CD and the corresponding visual nomograph, and to provide an accurate and convenient reference for the risk determination and differential diagnosis of CD, in order to assist clinicians to better manage CD and reduce patient suffering. METHODS: Using a retrospective analysis, a total of 310 cases were collected from 2020 to 2022 at The Sixth Affiliated Hospital, Sun Yat-sen University, who were diagnosed by comprehensive clinical diagnosis, including 100 patients with CD, 50 patients with ulcerative colitis (UC), 110 patients with non-inflammatory bowel disease (non-IBD) diseases (65 cases of intestinal tuberculosis, radioactive enterocolitis 39, and colonic diverticulitis 6), and 50 healthy individuals (NC) in the non-CD group. Risk prediction models were established by measuring ESR, Hb, WBC, ALb, and CH levels in hematology. The models were evaluated and visualized using logistic-regression algorithm. RESULTS: 1) ESR, WBC, and WBC/CH ratios in the CD group were higher than those in the non-CD group, while ALb, Hb, CH, WBC/ESR ratio, and Hb/WBC ratio were lower than those in the non-CD group, and the differences were statistically significant (all p < 0.05). 2) CD occurrence had a strong correlation with the WBC/CH ratio, with the correlation coefficient exceeding 0.4; CD occurrence was correlated with other indicators. 3) A risk prediction model containing age, gender, ESR, ALb, Hb, CH, WBC, WBC/CH, WBC/ESR, and Hb/WBC characteristics was constructed using a logistic-regression algorithm. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve of the model were 83.0%, 76.2%, 59.0%, 90.5%, and 0.86, respectively. The model based on the corresponding index also had high diagnostic accuracy (AUC = 0.88) for differentiating CD from ITB. Visual nomograph based on the logistic-regression algorithm was also constructed for clinical application reference. CONCLUSIONS: In this study, a CD risk prediction model was established and visualized by five conventional hema-tological indices: ESR, Hb, WBC, ALb, and CH, in addition to a high diagnostic accuracy for the differential diagnosis of CD and ITB.


Assuntos
Colite Ulcerativa , Doença de Crohn , Tuberculose Gastrointestinal , Humanos , Doença de Crohn/diagnóstico , Colite Ulcerativa/diagnóstico , Estudos Retrospectivos , Biomarcadores/análise , Tuberculose Gastrointestinal/diagnóstico , Diagnóstico Diferencial
3.
Analyst ; 145(20): 6447-6455, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33043931

RESUMO

The development of a microplatform with multifunctional integration allowing the dynamic and high-throughput exploration of three-dimensional (3D) cultures is promising for biomedical research. Here, we introduce an integrated microfluidic 3D tumor system with pneumatic manipulation and chemical gradient generation to investigate anticancer therapy in a parallel, controllable, dynamic, and high-throughput manner. The stability of the microfluidic system to realize precise and long-term chemical gradient production was developed. Serial manipulations including active cell trapping, array-like tumor self-assembly and formation, reliable gradient generation, parallel multi-concentration drug stimulation, and real-time tumor analysis were achieved in a single microfluidic device. The microfluidic platform was demonstrated to be stable for high-throughput cell trapping and 3D tumor formation with uniform quantities. On-chip analysis of phenotypic tumor responses to diverse chemotherapies with different concentrations can be conducted in this device. The microfluidic advancement holds great potential for applications in the development of high-performance and multi-functional biomimetic tumor systems and in the fields of cancer research and pharmaceutical development.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Linhagem Celular Tumoral , Dispositivos Lab-On-A-Chip
4.
Appl Opt ; 58(33): 9305-9309, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31873610

RESUMO

In conventional acoustic-resolution-based photoacoustic microscopy (ARPAM), a focused ultrasound transducer is placed coaxially with the laser beam to obtain the generated ultrasound signals. The information from deep regions can be greatly affected by the shallow targets. More importantly, in ARPAM the irreconcilable conflict between the lateral resolution and depth of fields has always been a major factor that lowers the imaging quality. In this work, an ARPAM system was developed, in which a non-coaxial arrangement of light illumination and acoustic detection was adopted to alleviate the influence of the tissue surface on the deep targets, and a focal zone integral algorithm was applied with a multiple scanning scheme to improve the lateral resolution. The system can achieve a consistent high lateral resolution of 0.5 mm over a large range in the axial direction. Both the phantom experiment and the chicken embryo in vivo results indicate that the proposed method can provide more in-depth information compared with the conventional ARPAM method. With the development of high repetition lasers and the advancement of image scanning technologies, the proposed method may play an important role in cerebral vascular imaging, superficial tumor imaging, and other related biomedical imaging applications.

5.
Quant Imaging Med Surg ; 8(11): 1084-1094, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30701162

RESUMO

BACKGROUND: Simulation of the emitted acoustic field is crucial to the design of ultrasound transducers. The method based on the spatial impulse response (SIR) and aperture discretization provides a powerful tool to study the acoustic field emitted by a transducer with complex aperture geometry and sophisticated apodization/excitation pattern. METHODS: In this work, a new method based on the dynamically refined sub-elements (SE) is employed to discrete the aperture and generate the SIR. Then, these SIRs are convoluted with the excitation pulse to get the acoustic pressure (AP) signal. When calculating the SIR with this method, the slowly changed time flight from a SE to a field point (FP) is approximated with a step function, and the fast changed length of intersection between a SE and a spherical wave centered at a FP is accurately estimated with the areas of the sub-parts (SP) which are given by the dynamically refined SE. RESULTS: Simulations of the acoustic field created by a focusing transducer array and a hollow structured point focusing transducer indicate that the proposed new method can give similar data accuracy with a sampling frequency 16 times lower than the conventional time tracing SE (TTSE) based method. The computational cost is also reduced by nearly one order of magnitude. CONCLUSIONS: A new method is proposed to simulate the acoustic field emitted by transducers with complex geometrical structure and sophisticated apodization/excitation patterns. The required sampling frequency with the new algorithm is greatly reduced compared to that of the conventional TTSE-based method; thus, the efficiency of the acoustic field calculation is improved significantly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA