Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 328: 121713, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220345

RESUMO

Developing environmentally friendly film materials for packaging pesticides is significant yet challenging. The use of native starch for preparing inner packaging materials of pesticides is limited by its physicochemical properties. In this study, a novel strategy of synergetic mechanical activation (MA)-enhanced solid-phase esterification of starch and cooperative combination of starch and polyvinyl alcohol (PVA) was proposed to fabricate biodegradable and cold-water-soluble starch (St)/PVA films. The appropriate esterification of starch and favorable compatibility between starch and PVA contributed to the production of St/PVA films by the extrusion-blowing method. The as-prepared film with St/PVA ratio of 4:6 exhibited outstanding mechanical properties (tensile strengths of 21.0 MPa; elongation at break of 213.9 %), cold-water solubility (dissolution time of 90 s), and oxygen barrier performance (oxygen transmission rate of 1.41 cm3/(m2·day·bar)). The dissolved St/PVA films with amphiphilic groups were conducive to the emulsification of butachlor (a fat-soluble liquid pesticide) and the dispersibility of oxyfluorfen (a fat-soluble solid pesticide). Furthermore, a mechanism of the interaction between pesticides and the surface of weed leaves was proposed to reveal the enhanced efficacy of St/PVA films-packaged pesticides. The strategy based on MA-enhanced esterification and PVA blending is efficient to produce starch-based films suitable for inner packaging materials of pesticides.

2.
Int J Biol Macromol ; 237: 124196, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36972830

RESUMO

The development of sustainable catalysts for the efficient conversion of biomass to desirable chemicals is significant and challenging. Herein, a stable biochar (BC)-supported amorphous aluminum solid acid catalyst with Brønsted-Lewis dual acid sites was constructed through one-step calcination of a mechanical activation (MA)-treated precursor (starch, urea, and Al(NO3)3). The as-prepared N-doped BC (N-BC)-supported Al composite (MA-Al/N-BC) was used for the selective catalytic conversion of cellulose to produce levulinic acid (LA). MA treatment promoted uniform dispersion and stable embedding of Al-based components in the N-BC support with nitrogen- and oxygen-containing functional groups. This process provided the MA-Al/N-BC catalyst with Brønsted-Lewis dual acid sites and improved its stability and recoverability. When the MA-Al/N-BC catalyst was used under optimal reaction conditions (180 °C, 4 h), it achieved a cellulose conversion rate of 93.1% and a LA yield of 70.1%. Additionally, it also showed high activity for catalytic conversion of other carbohydrates. The results of this study offer a promising solution for the production of sustainable biomass-derived chemicals through the use of stable and eco-friendly catalysts.


Assuntos
Alumínio , Celulose , Ácidos de Lewis , Carboidratos , Catálise
3.
Chemosphere ; 319: 137979, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736475

RESUMO

Nanoscale zero-valent iron (nZVI) has been widely used in the reductive removal of contaminants from water, yet it still fights against the inherent passive cover and the raise of medium pH. In this study, nZVI was supported onto a nitrogen-doped biochar (NBC) that was prepared by pyrolyzing shrimp shell for efficiently sequestrating aqueous selenite (Se(IV)). The resultant composite (NBC-nZVI) revealed a higher reactivity and electron utilization efficiency (EUE) than the bare nZVI in Se(IV) sequestration because of the positive charge, the buffering effect and the good conductivity of NBC. The kinetic rate and EUE of NBC-nZVI were increased by 143.4% and 15.3% compared to the bare nZVI, respectively, at initial pH of 3.0. The high removal capacity of 605.4 mg g-1 for NBC-nZVI was obtained at Se(IV) concentration of 1000 mg L-1, initial pH of 3.0, NBC-nZVI dosage of 1.0 g L-1 and contact time of 12 h. Moreover, NBC-nZVI exhibited a strong tolerance to solution pHs and coexisting compounds (e.g., humic acid) and could reduce the Se(IV) concentration from 5.0 mg L-1 to below the limit of drinking water (50 µg L-1) in real-world samples. This work exemplified a utilization of shrimp shell-derived NBC to simultaneously enhance the reactivity and EUE of nZVI for reductively removing contaminants.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Ácido Selenioso/química , Elétrons , Poluentes Químicos da Água/análise , Água/química , Adsorção
4.
Int J Biol Macromol ; 220: 79-89, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973482

RESUMO

Pig hair (PH), a keratinous waste, was modified by ammonium thioglycolate in a ball milling to promote its performance of Hg(II) sequestration. The ball milling broke the hydrophobic cuticle sheath and enhanced the reduction of disulfide bond, which increased the sulfydryl content of the modified PH (BTPH) from 0.07 to 11.05 µmol/g. BTPH exhibited a significantly higher capture capacity of Hg(II) (415.4 mg/g) than PH (3.1 mg/g), as well as the commercial activated carbon (219.7 mg/g), and persisted its performance over a wide range of solution pH. Meanwhile, BTPH with a distribution coefficient of 5.703 × 105 mL/g could selectively capture Hg(II) from the water with the coexisting metal ions such as Mg(II), Cd(II) and Pb(II). Moreover, the low-cost BTPH could reduce the Hg(II) from 1.0 mg/L to well below the limit of drinkable water (2 µg/L) in real-world samples. Density functional theory (DFT) calculations and state-of-the-art characterizations illustrated that the binding of Hg(II) to sulfydryl groups was the main adsorption mechanism. Notably, BTPH decreased the mercury content of water spinaches from 24.1 to 0.50 mg/kg and thereby significantly reduced the phytotoxicity of Hg(II). This work therefore provides a sustainable way to utilize keratinous wastes for the remediation of aqueous Hg(II).


Assuntos
Mercúrio , Poluentes Químicos da Água , Adsorção , Animais , Cádmio/química , Carvão Vegetal/química , Dissulfetos , Cabelo/química , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Lipoproteínas HDL , Mercúrio/química , Compostos de Sulfidrila/química , Suínos , Água , Poluentes Químicos da Água/química
5.
J Hazard Mater ; 433: 128808, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381514

RESUMO

The use of aerogels to selectively recover oil from oily wastewater is effective but challenging. In this study, a new carboxylated carbon nanotube/chitosan aerogel (CCNT/CA) with switchable wettability was developed as a smart adsorbent for fast oil absorption and oil recovery. Vinyltrimethoxysilane and thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was grafted onto the surface of the CCNT/CA skeleton, and the resulting smart aerogel (PNI-Si@CCNT/CA) exhibited temperature responsiveness. PNI-Si@CCNT/CA exhibited an excellent reversible conversion between hydrophilicity and hydrophobicity when the temperature was changed to below or above the lower critical solution temperature (LCST) of PNIPAAm (~32 °C). Most importantly, CCNT significantly increased the oil absorption capacity, improved the mechanical properties, accelerated phonon conduction, enhanced thermal conductivity (80.57 mW m-1 K-1), improved the temperature response rate, shortened the oil desorption time (15 min), and improved the oil/water separation efficiency of PNI-Si@CCNT/CA because a strong interface interaction occurred between CCNT and chitosan. Moreover, PNI-Si@CCNT/CA absorbed oil at 45 °C and released the absorbed oil at 25 °C. It maintained its good adsorption performance after 15 cycles, and this was ascribed to its excellent mechanical properties and stable structure.

6.
ACS Appl Mater Interfaces ; 11(26): 23039-23049, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252506

RESUMO

Introduction of targeted defects into microporous UiO-66s for manipulating their three-dimensional size and surface properties can endow them with adsorption and separation areas involving angiotensin-converting-enzyme-inhibitory (ACE-inhibitory) peptides. Three hydrophobic amino acids (AAs) (i.e., proline (Pro), phenylalanine (Phe), and tryptophan (Trp)) having different physical/chemical properties were applied to in situ tailor defects in UiO-66 through targeted incoordination of missing linkers or missing nodes. Characterization results revealed a uniform oval shape of the developed defects with lengths ranging from 1.8 to 3.1 nm, which was also highly consistent with our molecular simulation. Among these three defective UiO-66s, Phe and Trp imprinted UiO-66s significantly promoted the adsorption affinity of small ACE-inhibitory peptides (uptake: 1.25 mmol g-1 for DDFF and 1.37 mmol g-1 for DDWW) and ultrahigh selectivity for DDFF (249) or DDWW (279) from inactive KKKK solution based on a lock-and-key mechanism. As a result, the imprinted UiO-66 showed an enrichment capacity for ACE-inhibitory peptides about eight times higher than that of pristine UiO-66. Therefore, the amino acid imprinting strategy endorsed by its facile and discerning ability can be envisioned to be of great value for small functional peptide separation and oriented enrichment in biomedicines.


Assuntos
Adsorção/efeitos dos fármacos , Inibidores da Enzima Conversora de Angiotensina/química , Peptídeos/química , Peptidil Dipeptidase A/química , Aminoácidos/química , Humanos , Peptidil Dipeptidase A/genética , Fenilalanina/química , Prolina/química , Propriedades de Superfície
7.
J Agric Food Chem ; 65(51): 11202-11211, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29215878

RESUMO

A novel, moderately hydrophilic peptide (RYL) with high ACE-inhibitory activity was screened ultrafast via a concept of waste conversion using waste. This novel peptide was screened from silkworm pupa using an Fe-doped porous biocarbon (FL/Z-SE) derived from silkworm excrement. FL/Z-SE possessed magnetic properties and specific selection for peptides due to Fe's dual functions. The selected RYL, which has moderate hydrophilicity (LogP = -0.22), exhibited a comparatively high ACE-inhibitory activity (IC50 = 3.31 ± 0.11 µM). The inhibitory kinetics and docking-simulation results show that, as a competitive ACE inhibitor, RYL formed five hydrogen bonds with the ACE residues in the S1 and S2 pockets. In this work, both the screening carbon material and the selected ACE-inhibitory peptide were derived from agricultural waste (silkworm excrement and pupa), which offers a new way of thinking about the development of advanced uses of the silkworm byproducts and wastes.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Bombyx/química , Carbono/química , Proteínas de Insetos/química , Peptídeos/isolamento & purificação , Pupa/química , Resíduos/análise , Inibidores da Enzima Conversora de Angiotensina/química , Animais , Ligação de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Acoplamento Molecular , Peptídeos/química , Peptidil Dipeptidase A/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA