Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
J Orthop Res ; 42(8): 1631-1640, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897819

RESUMO

Proteomics is a growing field that offers insights into various aspects of disease processes and therapy responses. Within the field of orthopedics, there are a variety of diseases that have a poor prognosis due to a lack of targeted curative therapy or disease modifying therapy. Other diseases have been difficult to manage in part due to lack of clinical biomarkers that offer meaningful insight into disease progression or severity. As an emerging technology, proteomics has been increasingly applied in studying bone biology and an assortment of orthopedics related diseases, such as osteoarthritis, osteosarcoma and bone tumors, osteoporosis, traumatic bone injury, spinal cord injury, hip and knee arthroplasty, and fragile healing. These efforts range from mechanistic studies for elucidating novel insights in tissue activity and metabolism to identification of candidate biomarkers for diagnosis, prognosis, and targeted treatment. The knowledge gained from these proteomic and functional studies has provided unique perspectives in studying orthopedic diseases. In this review, we seek to report on the current state of the proteomic study in the field of orthopedics, overview the advances in clinically applicable discoveries, and discuss the opportunities that may guide us for future research.


Assuntos
Proteômica , Humanos , Pesquisa Translacional Biomédica , Ortopedia , Animais , Biomarcadores/metabolismo
2.
Life (Basel) ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541613

RESUMO

Segmental bone defects that are caused by trauma, infection, tumor resection, or osteoporotic fractures present significant surgical treatment challenges. Host bone autograft is considered the gold standard for restoring function but comes with the cost of harvest site comorbidity. Allograft bone is a secondary option but has its own limitations in the incorporation with the host bone as well as its cost. Therefore, developing new bone tissue engineering strategies to treat bone defects is critically needed. In the past three decades, the use of stem cells that are delivered with different scaffolds or growth factors for bone tissue engineering has made tremendous progress. Many varieties of stem cells have been isolated from different tissues for use in bone tissue engineering. This review summarizes the progress in using different postnatal stem cells, including bone marrow mesenchymal stem cells, muscle-derived stem cells, adipose-derived stem cells, dental pulp stem cells/periodontal ligament stem cells, periosteum stem cells, umbilical cord-derived stem cells, peripheral blood stem cells, urine-derived stem cells, stem cells from apical papilla, and induced pluripotent stem cells, for bone tissue engineering and repair. This review also summarizes the progress using exosomes or extracellular vesicles that are delivered with various scaffolds for bone repair. The advantages and disadvantages of each type of stem cell are also discussed and explained in detail. It is hoped that in the future, these preclinical results will translate into new regenerative therapies for bone defect repair.

3.
Cells ; 12(14)2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508489

RESUMO

The onset and progression of human inflammatory joint diseases are strongly associated with the activation of resident synovium/infrapatellar fat pad (IFP) pro-inflammatory and pain-transmitting signaling. We recently reported that intra-articularly injected IFP-derived mesenchymal stem/stromal cells (IFP-MSC) acquire a potent immunomodulatory phenotype and actively degrade substance P (SP) via neutral endopeptidase CD10 (neprilysin). Our hypothesis is that IFP-MSC robust immunomodulatory therapeutic effects are largely exerted via their CD10-bound small extracellular vesicles (IFP-MSC sEVs) by attenuating synoviocyte pro-inflammatory activation and articular cartilage degradation. Herein, IFP-MSC sEVs were isolated from CD10High- and CD10Low-expressing IFP-MSC cultures and their sEV miRNA cargo was assessed using multiplex methods. Functionally, we interrogated the effect of CD10High and CD10Low sEVs on stimulated by inflammatory/fibrotic cues synoviocyte monocultures and cocultures with IFP-MSC-derived chondropellets. Finally, CD10High sEVs were tested in vivo for their therapeutic capacity in an animal model of acute synovitis/fat pad fibrosis. Our results showed that CD10High and CD10Low sEVs possess distinct miRNA profiles. Reactome analysis of miRNAs highly present in sEVs showed their involvement in the regulation of six gene groups, particularly those involving the immune system. Stimulated synoviocytes exposed to IFP-MSC sEVs demonstrated significantly reduced proliferation and altered inflammation-related molecular profiles compared to control stimulated synoviocytes. Importantly, CD10High sEV treatment of stimulated chondropellets/synoviocyte cocultures indicated significant chondroprotective effects. Therapeutically, CD10High sEV treatment resulted in robust chondroprotective effects by retaining articular cartilage structure/composition and PRG4 (lubricin)-expressing cartilage cells in the animal model of acute synovitis/IFP fibrosis. Our study suggests that CD10High sEVs possess immunomodulatory miRNA attributes with strong chondroprotective/anabolic effects for articular cartilage in vivo. The results could serve as a foundation for sEV-based therapeutics for the resolution of detrimental aspects of immune-mediated inflammatory joint changes associated with conditions such as osteoarthritis (OA).


Assuntos
Cartilagem Articular , Vesículas Extracelulares , MicroRNAs , Osteoartrite , Sinovite , Animais , Humanos , Sinovite/metabolismo , Osteoartrite/metabolismo , Vesículas Extracelulares/metabolismo , Articulação do Joelho/metabolismo , MicroRNAs/metabolismo , Cartilagem Articular/metabolismo , Neprilisina/metabolismo , Fibrose , Homeostase , Células Estromais/metabolismo
4.
Life (Basel) ; 13(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511942

RESUMO

BACKGROUND: Senescence, a characteristic of cellular aging and inflammation, has been linked to the acceleration of osteoarthritis. The purpose of this study is to prospectively identify, measure, and compare senescent profiles in synovial fluid and peripheral blood in patients with an acute knee injury within 48 h. METHODS: Seven subjects, aged 18-60 years, with an acute ACL tear with effusion were prospectively enrolled. Synovial fluid and peripheral blood samples were collected and analyzed by flow cytometry, using senescent markers C12FDG and CD87. The senescent versus pro-regenerative phenotype was probed at a gene and protein level using qRT-PCR and multiplex immunoassays. RESULTS: C12FDG and CD87 positive senescent cells were detected in the synovial fluid and peripheral blood of all patients. Pro-inflammatory IL-1ß gene expression measured in synovial fluid was significantly higher (p = 0.0156) than systemic/blood expression. Senescent-associated factor MMP-3 and regenerative factor TIMP-2 were significantly higher in synovial fluid compared to blood serum. Senescent-associated factor MMP-9 and regenerative factor TGFß-2 were significantly elevated in serum compared to synovial fluid. Correlation analysis revealed that C12FDG++/CD87++ senescent cells in synovial fluid positively correlated with age-related growth-regulated-oncogene (ρ = 1.00, p < 0.001), IFNγ (ρ = 1.00, p < 0.001), IL-8 (ρ = 0.90, p = 0.0374), and gene marker p16 (ρ = 0.83, p = 0.0416). CONCLUSIONS: There is an abundance of senescent cells locally and systemically after an acute ACL tear without a significant difference between those present in peripheral blood compared to synovial fluid. This preliminary data may have a role in identifying strategies to modify the acute environment within the synovial fluid, either at the time of acute ligament injury or reconstruction surgery.

5.
Cells ; 12(10)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37408255

RESUMO

Osteoarthritis (OA) is the most common cause of disability worldwide among the elderly. Alarmingly, the incidence of OA in individuals less than 40 years of age is rising, likely due to the increase in obesity and post-traumatic osteoarthritis (PTOA). In recent years, due to a better understanding of the underlying pathophysiology of OA, several potential therapeutic approaches targeting specific molecular pathways have been identified. In particular, the role of inflammation and the immune system has been increasingly recognized as important in a variety of musculoskeletal diseases, including OA. Similarly, higher levels of host cellular senescence, characterized by cessation of cell division and the secretion of a senescence-associated secretory phenotype (SASP) within the local tissue microenvironments, have also been linked to OA and its progression. New advances in the field, including stem cell therapies and senolytics, are emerging with the goal of slowing disease progression. Mesenchymal stem/stromal cells (MSCs) are a subset of multipotent adult stem cells that have demonstrated the potential to modulate unchecked inflammation, reverse fibrosis, attenuate pain, and potentially treat patients with OA. Numerous studies have demonstrated the potential of MSC extracellular vesicles (EVs) as cell-free treatments that comply with FDA regulations. EVs, including exosomes and microvesicles, are released by numerous cell types and are increasingly recognized as playing a critical role in cell-cell communication in age-related diseases, including OA. Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of SASP. This article highlights the encouraging potential for MSC or MSC-derived products alone or in combination with senolytics to control patient symptoms and potentially mitigate the progression of OA. We will also explore the application of genomic principles to the study of OA and the potential for the discovery of OA phenotypes that can motivate more precise patient-driven treatments.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Senoterapia , Vesículas Extracelulares/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo
6.
Stem Cells ; 41(7): 698-710, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37279940

RESUMO

Mesenchymal stem cells (MSCs) have long been viewed as a promising therapeutic for musculoskeletal repair. However, regulatory concerns including tumorgenicity, inconsistencies in preparation techniques, donor-to-donor variability, and the accumulation of senescence during culture expansion have hindered the clinical application of MSCs. Senescence is a driving mechanism for MSC dysfunction with advancing age. Often characterized by increased reactive oxygen species, senescence-associated heterochromatin foci, inflammatory cytokine secretion, and reduced proliferative capacity, senescence directly inhibits MSCs efficacy as a therapeutic for musculoskeletal regeneration. Furthermore, autologous delivery of senescent MSCs can further induce disease and aging progression through the secretion of the senescence-associated secretory phenotype (SASP) and mitigate the regenerative potential of MSCs. To alleviate these issues, the use of senolytic agents to selectively clear senescent cell populations has become popular. However, their benefits to attenuating senescence accumulation in human MSCs during the culture expansion process have not yet been elucidated. To address this, we analyzed markers of senescence during the expansion of human primary adipose-derived stem cells (ADSCs), a population of fat-resident MSCs commonly used in regenerative medicine applications. Next, we used the senolytic agent fisetin to determine if we can reduce these markers of senescence within our culture-expanded ADSC populations. Our results indicate that ADSCs acquire common markers of cellular senescence including increased reactive oxygen species, senescence-associated ß-galactosidase, and senescence-associated heterochromatin foci. Furthermore, we found that the senolytic agent fisetin works in a dose-dependent manner and selectively attenuates these markers of senescence while maintaining the differentiation potential of the expanded ADSCs.


Assuntos
Heterocromatina , Células-Tronco Mesenquimais , Humanos , Espécies Reativas de Oxigênio , Senoterapia , Células Cultivadas , Senescência Celular/genética , Diferenciação Celular , Proliferação de Células
7.
Arthroscopy ; 39(12): 2408-2419, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37270113

RESUMO

PURPOSE: To investigate the effects of combining bone marrow stimulation (BMS) with oral losartan to block transforming growth factor ß1 (TGF-ß1) on biomechanical repair strength in a rabbit chronic injury model. METHODS: Forty rabbits were randomly allocated into 4 groups (10 in each group). The supraspinatus tendon was detached and left alone for 6 weeks to establish a rabbit chronic injury model and was then repaired in a surgical procedure using a transosseous, linked, crossing repair construct. The animals were divided into the following groups: control group (group C), surgical repair only; BMS group (group B), surgical repair with BMS of the tuberosity; losartan group (group L), surgical repair plus oral losartan (TGF-ß1 blocker) for 8 weeks; and BMS-plus-losartan group (group BL), surgical repair plus BMS plus oral losartan for 8 weeks. At 8 weeks after repair, biomechanical and histologic evaluations were performed. RESULTS: The biomechanical testing results showed significantly higher ultimate load to failure in group BL than in group B (P = .029) but not compared with group C or group L. A 2 × 2 analysis-of-variance model found that the effect of losartan on ultimate load significantly depended on whether BMS was performed (interaction term F1,28 = 5.78, P = .018). No difference was found between the other groups. No difference in stiffness was found between any groups. On histologic assessment, groups B, L, and BL showed improved tendon morphology and an organized type I collagen matrix with less type III collagen compared with group C. Group BL showed the most highly organized tendon matrix with more type I collagen and less type III collagen, which indicates less fibrosis. Similar results were found at the bone-tendon interface. CONCLUSIONS: Rotator cuff repair combined with oral losartan and BMS of the greater tuberosity showed improved pullout strength and a highly organized tendon matrix in this rabbit chronic injury model. CLINICAL RELEVANCE: Tendon healing or scarring is accompanied by the formation of fibrosis, which has been shown to result in compromised biomechanical properties, and is therefore a potential limiting factor in healing after rotator cuff repair. TGF-ß1 expression has been shown to play an important role in the formation of fibrosis. Recent studies focusing on muscle healing and cartilage repair have found that the downregulation of TGF-ß1 by losartan intake can reduce fibrosis and improve tissue regeneration in animal models.


Assuntos
Medula Óssea , Losartan , Animais , Coelhos , Losartan/farmacologia , Losartan/uso terapêutico , Fator de Crescimento Transformador beta1 , Colágeno Tipo I , Colágeno Tipo III , Tendões/cirurgia , Fibrose
8.
Int J Bioprint ; 9(3): 711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292170

RESUMO

299In Duchenne muscular dystrophy, dystrophic muscle phenotypes are closely associated with the exhaustion of muscle stem cells. Transplantation of muscle stem cells has been widely studied for improving muscle regeneration, but poor cell survival and self-renewal, rapid loss of stemness, and limited dispersion of grafted cells following transplantation have collectively hindered the overall success of this strategy. Optimized mechanisms for maintaining and improving stem cell function are naturally present in the microenvironment of the stem cell niche in healthy muscles. Therefore, one logical strategy toward improving stem cell function and efficiency of stem cell transplantation in diseased muscles would be the establishment of a microenvironment mimicking some key aspects of healthy native stem cell niches. Here, we applied inkjet-based bioprinting technology to engineer a mimicked artificial stem cell niche in dystrophic muscle, comprising stem cell niche regulating factors (Notch activator DLL1) bioprinted onto 3D DermaMatrix construct. The recombinant DLL1 protein, DLL1 (mouse): Fc (human) (rec), was applied here as the Notch activator. Bioprinted DermaMatrix construct was seeded with muscle stem cells in vitro, and increased stem cell maintenance and repressed myogenic differentiation process was observed. DLL1 bioprinted DermaMatrix construct was then engrafted into dystrophic muscle of mdx/scid mice, and the improved cell engraftment and progression of muscle regeneration was observed 10 days after engraftment. Our results demonstrated that bioprinting of Notch activator within 3D construct can be applied to serve as muscle stem cell niche and improve the efficacy of muscle stem cell transplantation in diseased muscle.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37145890

RESUMO

Stem cell therapy represents one of the most promising approaches for tissue repair and regeneration. However, the full potential of stem cell therapy remains to be realized. One major challenge is the insufficient homing and retention of stem cells at the desired sites after in vivo delivery. Here, we provide a proof-of-principle demonstration of magnetic targeting and retention of human muscle-derived stem cells (hMDSCs) in vitro through magnetic force-mediated internalization of magnetic iron oxide nanoparticles (MIONs) and the use of a micropatterned magnet. We found that the magnetic force-mediated cellular uptake of MIONs occurs through an endocytic pathway, and the MIONs were exclusively localized in the lysosomes. The intracellular MIONs had no detrimental effect on the proliferation of hMDSCs or their multilineage differentiation, and no MIONs were translocated to other cells in a coculture system. Using hMDSCs and three other cell types including human umbilical vein endothelial cells (HUVECs), human dermal fibroblasts (HDFs), and HeLa cells, we further discovered that the magnetic force-mediated MION uptake increased with MION size and decreased with cell membrane tension. We found that the cellular uptake rate was initially increased with MION concentration in solution and approached saturation. These findings provide important insight and guidance for magnetic targeting of stem cells in therapeutic applications.

10.
Mol Ther Methods Clin Dev ; 28: 355-365, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36879848

RESUMO

Endogenous reprogramming of pancreas-derived non-beta cells into insulin-producing cells is a promising approach to treat type 1 diabetes (T1D). One strategy that has yet to be explored is the specific delivery of insulin-producing essential genes, Pdx1 and MafA, to pancreatic alpha cells to reprogram the cells into insulin-producing cells in an adult pancreas. In this study, we used an alpha cell-specific glucagon (GCG) promoter to drive Pdx1 and MafA transcription factors to reprogram alpha cells to insulin-producing cells in chemically induced and autoimmune diabetic mice. Our results showed that a combination of a short glucagon-specific promoter with AAV serotype 8 (AAV8) can be used to successfully deliver Pdx1 and MafA to pancreatic alpha cells in the mouse pancreas. Pdx1 and MafA expression specifically in alpha cells were also able to correct hyperglycemia in both induced and autoimmune diabetic mice. With this technology, targeted gene specificity and reprogramming were accomplished with an alpha-specific promotor combined with an AAV-specific serotype and provide an initial basis to develop a novel therapy for the treatment of T1D.

11.
Aging Cell ; 22(4): e13782, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36734200

RESUMO

Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1-/D mice). Ckmm-Cre+/- ;Ercc1-/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/- ;Ercc1-/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/- ;Ercc1-/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/- ;Ercc1-/fl and Ercc1-/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.


Assuntos
Cardiomiopatia Dilatada , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Miocárdio/metabolismo , Reparo do DNA
12.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768718

RESUMO

Osteoporosis and age-related bone loss increase bone fracture risk and impair bone healing. The need for identifying new factors to prevent or treat bone loss is critical. Previously, we reported that young MRL/MpJ mice have superior bone microarchitecture and biomechanical properties as compared to wild-type (WT) mice. In this study, MRL/MpJ mice were tested for resistance to age-related and long-term ovariectomy-induced bone loss to uncover potential beneficial factors for bone regeneration and repair. Bone tissues collected from 14-month-old MRL/MpJ and C57BL/6J (WT) mice were analyzed using micro-CT, histology, and immunohistochemistry, and serum protein markers were characterized using ELISAs or multiplex assays. Furthermore, 4-month-old MRL/MpJ and WT mice were subjected to ovariectomy (OV) or sham surgery and bone loss was monitored continuously using micro-CT at 1, 2, 4, and 6 months (M) after surgery with histology and immunohistochemistry performed at 6 M post-surgery. Sera were collected for biomarker detection using ELISA and multiplex assays at 6 M after surgery. Our results indicated that MRL/MpJ mice maintained better bone microarchitecture and higher bone mass than WT mice during aging and long-term ovariectomy. This resistance of bone loss observed in MRL/MpJ mice correlated with the maintenance of higher OSX+ osteoprogenitor cell pools, higher activation of the pSMAD5 signaling pathway, more PCNA+ cells, and a lower number of osteoclasts. Systemically, lower serum RANKL and DKK1 with higher serum IGF1 and OPG in MRL/MpJ mice relative to WT mice may also contribute to the maintenance of higher bone microarchitecture during aging and less severe bone loss after long-term ovariectomy. These findings may be used to develop therapeutic approaches to maintain bone mass and improve bone regeneration and repair due to injury, disease, and aging.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Feminino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Osteoporose/etiologia , Regeneração Óssea , Biomarcadores
13.
Aging Cell ; 22(1): e13759, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536521

RESUMO

Mesenchymal-derived stromal or progenitor cells, commonly called "MSCs," have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of interest, are largely driven by the biomolecules the cells secrete, including cytokines, chemokines, growth factors, and extracellular vesicles containing miRNA. This secretome coordinates upregulation of endogenous repair and immunomodulation in the local microenvironment through crosstalk of MSCs with host tissue cells. Therapeutic applications for MSCs and their secretome-derived products often involve in vitro monolayer expansion. However, consecutive passaging of MSCs significantly alters their therapeutic potential, inducing a broad shift from a pro-regenerative to a pro-inflammatory phenotype. A consistent by-product of in vitro expansion of MSCs is the onset of replicative senescence, a state of cell arrest characterized by an increased release of proinflammatory cytokines and growth factors. However, little is known about changes in the secretome profile at different stages of in vitro expansion. Some culture conditions and bioprocessing techniques have shown promise in more effectively retaining the pro-regenerative and anti-inflammatory MSC phenotype throughout expansion. Understanding how in vitro expansion conditions influence the nature and function of MSCs, and their associated secretome, may provide key insights into the underlying mechanisms driving these alterations. Elucidating the dynamic and diverse changes in the MSC secretome at each stage of in vitro expansion is a critical next step in the development of standardized, safe, and effective MSC-based therapies.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Células-Tronco Mesenquimais/metabolismo , Citocinas/metabolismo , MicroRNAs/metabolismo , Diferenciação Celular , Vesículas Extracelulares/metabolismo
14.
J Orthop Res ; 41(6): 1186-1197, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36250617

RESUMO

Mesenchymal stem cells (MSCs) have been proven to promote tissue repair. However, concerns related to their clinical application and regulatory hurdles remain. Recent data has demonstrated the proregenerative secretome of MSCs can result in similar effects in the absence of the cells themselves. Within the secretome, exosomes have emerged as a promising regenerative component. Exosomes, which are nanosized lipid vesicles secreted by cells, encapsulate micro-RNA (miRNA), RNA, and proteins that drive MSCs regenerative potential with cell specific content. As such, there is an opportunity to optimize the regenerative potential of MSCs, and thus their secreted exosome fraction, to improve clinical efficacy. Exercise is one factor that has been shown to improve muscle progenitor cell function and regenerative potential. However, the effect of exercise on MSC exosome content and function is still unclear. To address this, we used an in vitro culture system to evaluate the effects of mechanical strain, an exercise mimetic, on C2C12 (muscle progenitor cell) exosome production and proregenerative function. Our results indicate that the total exosome production is increased by mechanical strain and can be regulated with different tensile loading regimens. Furthermore, we found that exosomes from mechanically stimulated cells increase proliferation and myogenic differentiation of naïve C2C12 cells. Lastly, we show that exosomal miRNA cargo is differentially expressed following strain. Gene ontology mapping suggests positive regulation of bone morphogenetic protein signaling, regulation of actin-filament-based processes, and muscle cell apoptosis may be at least partially responsible for the proregenerative effects of exosomes from mechanically stimulated C2C12 muscle progenitor cells.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , MicroRNAs/metabolismo , Exossomos/metabolismo , Comunicação Celular , Músculos/metabolismo
15.
J Cachexia Sarcopenia Muscle ; 13(6): 3137-3148, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36218080

RESUMO

BACKGROUND: Fibro-adipogenic progenitors (FAPs) in the muscles have been found to interact closely with muscle progenitor/stem cells (MPCs) and facilitate muscle regeneration at normal conditions. However, it is not clear how FAPs may interact with MPCs in aged muscles. Senolytics have been demonstrated to selectively eliminate senescent cells and generate therapeutic benefits on ageing and multiple age-related disease models. METHODS: By studying the muscles and primary cells of age matched WT mice and Zmpste24-/- (Z24-/- ) mice, an accelerated ageing model for Hutchinson-Gilford progeria syndrome (HGPS), we examined the interaction between FAPs and MPCs in progeria-aged muscle, and the potential effect of senolytic drug fisetin in removing senescent FAPs and improving the function of MPCs. RESULTS: We observed that, compared with muscles of WT mice, muscles of Z24-/- mice contained a significantly increased number of FAPs (2.4-fold; n > =6, P < 0.05) and decreased number of MPCs (2.8-fold; n > =6, P < 0.05). FAPs isolated from Z24-/- muscle contained about 44% SA-ß-gal+ senescent cells, in contrast to about 3.5% senescent cells in FAPs isolated from WT muscle (n > =6, P < 0.001). The co-culture of Z24-/- FAPs with WT MPCs resulted in impaired proliferation and myogenesis potential of WT MPCs, with the number of BrdU positive proliferative cells being reduced for 3.3 times (n > =6, P < 0.001) and the number of myosin heavy chain (MHC)-positive myotubes being reduced for 4.5 times (n > =6, P < 0.001). The treatment of the in vitro co-culture system of Z24-/- FAPs and WT MPCs with the senolytic drug fisetin led to increased apoptosis of Z24-/- FAPs (14.5-fold; n > =6, P < 0.001) and rescued the impaired function of MPCs by increasing the number of MHC-positive myotubes for 3.1 times (n > =6, P < 0.001). Treatment of Z24-/- mice with fisetin in vivo was effective in reducing the number of senescent FAPs (2.2-fold, n > =6, P < 0.05) and restoring the number of muscle stem cells (2.6-fold, n > =6, P < 0.05), leading to improved muscle pathology in Z24-/- mice. CONCLUSIONS: These results indicate that the application of senolytics in the progeria-aged muscles can be an efficient strategy to remove senescent cells, including senescent FAPs, which results in improved function of muscle progenitor/stem cells. The senescent FAPs can be a potential novel target for therapeutic treatment of progeria ageing related muscle diseases.


Assuntos
Progéria , Células Satélites de Músculo Esquelético , Camundongos , Animais , Progéria/tratamento farmacológico , Senoterapia , Adipogenia , Fibras Musculares Esqueléticas
16.
Pharmacol Res ; 185: 106504, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36243333

RESUMO

As the worldwide population progresses in age, there is an increasing need for effective treatments for age-associated musculoskeletal conditions such as osteoporosis and osteoarthritis (OA). Fisetin, a natural flavonoid, has garnered attention as a promising pharmaceutical option for treating or delaying the progression of osteoporosis and OA. However, there is no systematic review of the effects of fisetin on bone and cartilage. The aim of this review is to report the latest evidence on the effects of fisetin on bone and cartilage, with a focus on clinical significance. The PubMed, Embase, and Cochrane Library databases were searched up to December 9th 2021 to evaluate the effects of fisetin on bone and cartilage in in vitro studies and in vivo preclinical animal studies. The risk of bias, quality, study design, sample characteristics, dose and duration of fisetin treatment, and outcomes of the 13 eligible studies were analyzed in this systematic review. Qualitative evaluation was conducted for each study due to differences in animal species, cell type, created disease model, dose and duration of fisetin treatment, and time between intervention and assessment among the eligible studies. The beneficial effects of fisetin on osteoporosis have been demonstrated in in vitro and in vivo preclinical studies across animal species. Similarly, the beneficial effects of fisetin on OA have been demonstrated in in vivo preclinical animal studies, but the reports on OA are still limited. Fisetin, a natural supplement can be use in orthobiologics treatment, as adjuvant to orthopaedic surgery, to improve clinical outcome.


Assuntos
Osteoartrite , Osteoporose , Animais , Flavonóis/uso terapêutico , Osteoartrite/tratamento farmacológico , Osteoporose/tratamento farmacológico , Cartilagem
17.
Arthrosc Sports Med Rehabil ; 4(5): e1739-e1746, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36312699

RESUMO

Purpose: To assess clinical outcomes following pectoralis major tendon (PMT) repairs and to compare outcomes of PMT repairs augmented with and without leukocyte-poor platelet-rich plasma (LP-PRP). Methods: A retrospective review of prospectively collected data was performed of patients who underwent a PMT repair from May 2007 to June 2019 with a minimum of 2-year follow-up. Exclusion criteria included revision PMT repair, PMT reconstruction, and concomitant repair of another glenohumeral tendon/ligament. LP-PRP was injected surrounding the PMT repair before wound closure. Patient-reported outcome (PRO) data were collected preoperatively and evaluated at final follow-up using the American Shoulder and Elbow Surgeons Score (ASES), Single Assessment Numeric Evaluation Score (SANE), Quick Disabilities of the Arm, Shoulder and Hand Score (QuickDASH), and Short Form 12 physical component summary (SF-12 PCS), patient satisfaction with outcomes. Results: Twenty-three men (mean age, 38.6 years; range, 20.5-64.3 years) were included in the final analysis. Mean time from injury to surgery was 30 days (range, 3-123 days). Follow-up was obtained for 16 of 23 patients (70%) at a mean of 5.1 years (range 2.0-13.0 years). Significant improvement in PROs was observed (ASES: 59.0 → 92.4, P = .008; SANE: 44.4 → 85.9, P = .018; QuickDASH: 44.4 → 8.5, P = .018; and SF-12 PCS: 42.5 → 52.6, P = .008). Median satisfaction was 9 of 10 (range, 6-10). Patients receiving LP-PRP had superior ASES (99.6 vs 83.0, P = .001), SANE (94.8 vs 74.6, P = .005), QuickDASH (0.24 vs 19.1, P = .001), and patient satisfaction (10 vs 9, P = .037) scores compared with those without PRP. PROs were unchanged based on chronicity, mechanism of injury, or tear location. One patient had revision surgery at 3.4 years due to adhesions. Conclusions: PMT repair produces improved PROs at final follow-up when compared with preoperative values. Level of Evidence: Level III, retrospective comparative therapeutic trial.

18.
Aging (Albany NY) ; 14(19): 7650-7661, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36084954

RESUMO

The aging of the immune system, or immunosenescence, was recently verified to have a causal role in driving the aging of solid organs, while the senolytic elimination of senescent immune cells was found to effectively delay systemic aging. Our recent study also showed that immune cells in severely dystrophic muscles develop senescence-like phenotypes, including the increased expression of senescence-associated secretory phenotype (SASP) factors and senescence markers. Here we further investigated whether the specific clearance of senescent immune cells in dystrophic muscle may effectively improve the function of muscle stem cells and the phenotypes of dystrophic muscle. We observed increased percentage of senescent cells in macrophages from mdx/utro(-/-) mice (a murine model for muscular dystrophy disease, dystrophin-/-; utrophin-/-), while the treatment of mdx/utro(-/-) macrophages with senolytic drug fisetin resulted in reduced number of senescent cells. We administrated fisetin to mdx/utro(-/-) mice for 4 weeks, and observed obviously reduced number of senescent immune cells, restored number of muscle cells, and improve muscle phenotypes. In conclusion, our results reveal that senescent immune cells, such as macrophages, are greatly involved in the development of muscle dystrophy by impacting the function of muscle stem cells, and the senolytic ablation of these senescent cells with fisetin can be an effective therapeutic strategy for improving function of muscle stem cells and phenotypes of dystrophic muscles.


Assuntos
Distrofina , Doenças Musculares , Camundongos , Animais , Distrofina/genética , Distrofina/metabolismo , Utrofina/genética , Camundongos Endogâmicos mdx , Senoterapia , Músculos/metabolismo , Macrófagos/metabolismo , Mioblastos/metabolismo , Músculo Esquelético/metabolismo , Senescência Celular
19.
Stem Cell Res Ther ; 13(1): 385, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907860

RESUMO

BACKGROUND: Bone morphogenetic protein 4 (BMP4) promotes the osteogenic differentiation and the bone regenerative potential of muscle-derived stem cells (MDSCs). BMP4 also promotes the self-renewal of both embryonic and somatic stem cells; however, BMP4 signaling activity significantly decreases with age. Cyclin-dependent kinase inhibitors P16INK4A (P16) and P18INK4C (P18) induce early G1-phase cell cycle blockade by targeting cyclin-dependent kinase 4/6. It is still unclear if BMP4 affects the bone regenerative potential of old MDSCs through regulation of P16 and P18 expression. METHODS: Young and old MDSCs were isolated from 3 week (young) and 2-year-old (old) mice. In vitro cell proliferation and multipotent differentiation were performed for young and old MDSCs both before and after BMP4/GFP transduction. Cell cycle genes were analyzed using Q-PCR. The bone regenerative potential of young and old MDSCs transduced with BMP4/GFP were compared using Micro-CT and histological analysis. The bone regenerative potential of young and old MDSCs was also compared between single and double transduction (higher BMP4 levels expression). The cell proliferation, mitochondrial function and osteogenic differentiation was also compared in vitro between cells that have been transduced with BMP4GFP (single and double transduction). The correlation of bone regeneration capacity of young and old MDSCs with P16 and P18 expression was further evaluated at 10 days after cell transplantation using histology and western blot analysis. RESULTS: Old murine MDSCs (MDSCs) exhibit reduced proliferation and multi-lineage differentiation potential with or without BMP4 stimulation, when compared to young murine MDSCs. Old MDSCs express significantly higher P16 and lower P18, with more cells in the G0/1 phase and fewer cells in the G2/M phase, compared to young MDSCs. Old MDSCs retrovirally transduced to express BMP4 regenerated less bone in a critical size skull defect in CD-1 nude mice when compared to young retrovirally transduced MDSCs expressing similar BMP4 levels and contribute less to the new regenerated new bone. Importantly, both young and old MDSCs can regenerate more bone when BMP4 expression levels are increased by double-transduction with the retroviral-BMP4/GFP. However, the bone regeneration enhancement with elevated BMP4 was more profound in old MDSCs (400% at 2 weeks) compared to young MDSCs (200%). Accordingly, P18 is upregulated while P16 is downregulated after BMP4 transduction. Double transduction did not further increase cell proliferation nor mitochondrial function but did significantly increase Osx expression in both young and old MDSCs. Old MDSCs had even significant higher Osx levels as compared to young MDSCs following double transduction, while a similar Alp expression was observed between young and old MDSCs after double transduction. In addition, at 10 days after cell transplantation, old MDSCs having undergone double transduction regenerated bone more rapidly as showed by Alcian blue and Von Kossa staining. Western blot assays demonstrated that old MDSCs after retro-BMP4/GFP double transduction have significantly lower P18 expression levels when compared to young BMP4-transduced MDSCs. In addition, P18 expression was slightly increased in old MDSCs after double transduction when compared to single transduction. P16 expression was not detectable for both young and two old BMP4/GFP transduced MDSCs groups. CONCLUSIONS: In summary, BMP4 can offset the adverse effect of aging on the osteogenic differentiation and the bone regenerative potential of old MDSCs via up-regulation of P18 and down-regulation P16 expression.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Regeneração Óssea , Osteogênese , Animais , Proteína Morfogenética Óssea 4/genética , Regeneração Óssea/genética , Ciclo Celular , Diferenciação Celular , Divisão Celular , Camundongos , Camundongos Nus , Músculos , Mioblastos , Osteogênese/genética
20.
J Bone Joint Surg Am ; 104(15): 1406-1414, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35867717

RESUMO

➤: Orthobiologics encompass numerous substances that are naturally found in the human body including platelet-rich plasma (PRP), isolated growth factors, and cell therapy approaches to theoretically optimize and improve the healing of cartilage, fractures, and injured muscles, tendons, and ligaments. ➤: PRP is an autologous derivative of whole blood generated by centrifugation and is perhaps the most widely used orthobiologic treatment modality. Despite a vast amount of literature on its use in osteoarthritis as well as in tendon and ligament pathology, clinical efficacy results remain mixed, partly as a result of insufficient reporting of experimental details or exact compositions of PRP formulations used. ➤: Mesenchymal stromal cells (MSCs) can be isolated from a variety of tissues, with the most common being bone marrow aspirate concentrate. Similar to PRP, clinical results in orthopaedics with MSCs have been highly variable, with the quality and concentration of MSCs being highly contingent on the site of procurement and the techniques of harvesting and preparation. ➤: Advances in novel orthobiologics, therapeutic targets, and customized orthobiologic therapy will undoubtedly continue to burgeon, with some early promising results from studies targeting fibrosis and senescence.


Assuntos
Osteoartrite , Plasma Rico em Plaquetas , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Ligamentos/lesões , Osteoartrite/terapia , Plasma Rico em Plaquetas/fisiologia , Tendões/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA