Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 289(7): 1858-1875, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739170

RESUMO

Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA-seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α-Satellite RNAs. We showed that α-Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α-Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α-Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor-binding motifs within α-Satellite centromeric arrays. Using high-resolution three-dimensional immuno-FISH and ChIP-qPCR, we showed an association between the α-Satellite upregulation and the recruitment of the transcription factor NFY-A to the centromere upon MG132-induced proteasome inhibition. Together, our results show that the proteasome controls α-Satellite RNAs associated with the regulation of mitosis.


Assuntos
Complexo de Endopeptidases do Proteassoma , RNA Satélite , Centrômero/genética , Centrômero/metabolismo , DNA Satélite/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Satélite/genética , Regulação para Cima
3.
J Biol Chem ; 286(37): 32277-88, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21784860

RESUMO

NF-κB transcription factors are pivotal players in controlling inflammatory and immune responses, as well as cell proliferation and apoptosis. Aberrant regulation of NF-κB and the signaling pathways that regulate its activity have been involved in various pathologies, particularly cancers, as well as inflammatory and autoimmune diseases. NF-κB activation is tightly regulated by the IκB kinase (IKK) complex, which is composed of two catalytic subunits IKKα and IKKß, and a regulatory subunit IKKγ/NEMO. Although IKKα and IKKß share structural similarities, IKKα has been shown to have distinct biological functions. However, the molecular mechanisms that modulate IKKα activity have not yet been fully elucidated. To understand better the regulation of IKKα activity, we purified IKKα-associated proteins and identified ABIN-2. Here, we demonstrate that IKKα and IKKß both interact with ABIN-2 and impair its constitutive degradation by the proteasome. Nonetheless, ABIN-2 enhances IKKα- but not IKKß-mediated NF-κB activation by specifically inducing IKKα autophosphorylation and kinase activity. Furthermore, we found that ABIN-2 serine 146 is critical for the ABIN-2-dependent IKKα transcriptional up-regulation of specific NF-κB target genes. These results imply that ABIN-2 acts as a positive regulator of NF-κB-dependent transcription by activating IKKα.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Transcrição Gênica/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células HEK293 , Células HeLa , Humanos , Quinase I-kappa B/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , NF-kappa B/genética , Fosforilação/fisiologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Regulação para Cima/fisiologia
4.
Nucleic Acids Res ; 37(13): 4518-31, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19483093

RESUMO

Products of the Steroid Receptor RNA Activator gene (SRA1) have the unusual property to modulate the activity of steroid receptors and other transcription factors both at the RNA (SRA) and the protein (SRAP) level. Balance between these two genetically linked entities is controlled by alternative splicing of intron-1, whose retention alters SRAP reading frame. We have previously found that both fully-spliced SRAP-coding and intron-1-containing non-coding SRA RNAs co-exist in breast cancer cell lines. Herein, we report a significant (Student's t-test, P < 0.003) higher SRA-intron-1 relative expression in breast tumors with higher progesterone receptor contents. Using an antisense oligoribonucleotide, we have successfully reprogrammed endogenous SRA splicing and increased SRA RNA-intron-1 relative level in T5 breast cancer cells. This increase is paralleled by significant changes in the expression of genes such as plasminogen urokinase activator and estrogen receptor beta. Estrogen regulation of other genes, including the anti-metastatic NME1 gene, is also altered. Overall, our results suggest that the balance coding/non-coding SRA transcripts not only characterizes particular tumor phenotypes but might also, through regulating the expression of specific genes, be involved in breast tumorigenesis and tumor progression.


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Oligorribonucleotídeos Antissenso , RNA não Traduzido/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Estradiol/farmacologia , Feminino , Humanos , Íntrons , Oligorribonucleotídeos Antissenso/química , RNA Longo não Codificante , RNA não Traduzido/química , RNA não Traduzido/genética , Receptores de Progesterona/metabolismo
5.
DNA Cell Biol ; 25(7): 418-28, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16848684

RESUMO

The Steroid Receptor RNA Activator 1 (SRA1) has originally been described as a noncoding RNA specifically activating steroid receptor transcriptional activity. We have, however, identified, in human breast tissue, exon- 1 extended SRA1 isoforms containing two initiating AUG codons and encoding a protein we called SRAP. We recently reported a decreased estrogen receptor activity in breast cancer cells overexpressing SRAP, suggesting antagonist roles played by SRA1 RNA and SRAP. SRA1 appears to be the first example of a molecule active both at the RNA and at the protein level. No data are currently available regarding the mechanisms possibly involved in the generation of coding and noncoding functional SRA1 RNAs. Using 5'-Rapid Amplification of cDNA Extremities (5'-RACE), we have herein identified several putative transcription initiation sites surrounding the second methionine codon and used to generate coding SRA1 transcripts. In the process, we also identified an alternatively spliced noncoding SRA1 transcript still containing an intron-1 sequence. Using targeted RT-PCR approaches, we confirmed the presence in breast cancer cell lines of SRA1 RNAs containing a full as well as a partial intron-1 sequence and established that the relative proportion of these RNAs varied within breast cancer cell lines. Using a "minigene" strategy, we also showed that artificial RNAs containing the SRA1 intron-1 sequence are alternatively spliced in breast cancer cell lines. Interestingly, the splicing pattern of the minigene products parallels the one of the endogenous SRA1 transcripts. Altogether, our data suggest that the primary genomic sequence in and around intron-1 is sufficient to lead to a differential splicing of this intron. We propose that alternative splicing of intron-1 is one mechanism used by breast cancer cells to regulate the balance between coding and functional noncoding SRA1 RNAs.


Assuntos
Processamento Alternativo , RNA Neoplásico/genética , RNA não Traduzido/genética , Sequência de Bases , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Feminino , Engenharia Genética , Humanos , Íntrons , Isoformas de Proteínas/genética , RNA Longo não Codificante , Sítio de Iniciação de Transcrição
7.
Front Biosci ; 11: 2483-95, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16720387

RESUMO

e human small breast epithelial mucin (SBEM) gene has been identified as being preferentially expressed in mammary epithelial cells and over-expressed in breast tumors. In this report, we have characterized the promoter of SBEM gene in order to identify sequences responsible for this strong mammary expression. A series of SBEM promoter/luciferase constructs were transiently transfected into both breast (MCF-7, BT-20) and non-breast (HeLa and HepG2) cell lines. In addition to the minimal promoter and to a repressor region, we have identified an 87-bp sequence (-357/-270) driving a strong breast-specific expression. Site-directed mutagenesis of a putative octamer-binding transcription factor binding site located within this latter region led to a strong decrease of the transcriptional activity of the SBEM promoter. Furthermore, transient over-expression of Oct1 and Oct2 not only increased SBEM promoter reporter activity, but also enhanced endogenous SBEM mRNA level. Overall, the data suggest that octamer-binding transcription factors participate in the strong expression of SBEM gene in breast tissues. Clarifying the SBEM gene regulation will help to dissect mechanisms underlying transcription of normal breast and breast cancer-associated genes.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Mucinas/biossíntese , Mucinas/genética , Fatores de Transcrição de Octâmero/metabolismo , Sítios de Ligação , Neoplasias da Mama/patologia , Carcinoma Hepatocelular/patologia , Feminino , Células HeLa , Humanos , Neoplasias Hepáticas/patologia , Mutagênese Sítio-Dirigida , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Transportador 1 de Cátions Orgânicos/fisiologia , Transportador 2 de Cátion Orgânico , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição , Transcrição Gênica
8.
Int J Cancer ; 118(4): 1054-9, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16152589

RESUMO

The steroid receptor RNA activator (SRA) was originally described as the first functional noncoding RNA able to specifically coactivate the activity of steroid receptors. We previously demonstrated the existence in breast cancer cell lines of new SRA isoforms that, as opposed to the first cloned SRA RNA, encode for a 236-amino acid protein, SRAP. To investigate the possible implications of the coding SRA RNA and SRAP expression on breast cancer progression, we examined by Western blot analysis 74 primary breast tumors of patients subsequently treated with tamoxifen. Patients whose primary tumors were positive for SRAP expression (n = 24) had a significantly (Kaplan-Meier survival curve p = 0.047) lower likelihood of dying from recurrent disease than SRAP-negative patients (n = 50). We generated 2 cell lines, SRAP-V5-High.A and SRAP-V5-High.B, by stably overexpressing SRAP in the estrogen receptor-positive MCF-7 breast cancer cell line. Transient transfection experiments, performed using a luciferase reporter gene under the control of an estrogen-responsive element, revealed decreased sensitivity to estradiol but no additional sensitivity to tamoxifen in SRAP-overexpressing cells. Overall, our data suggest that the presence of both coding SRA RNA and its corresponding SRAP modifies the activity of estrogen receptor in breast cancer cells and that SRAP could be a new clinical marker for breast cancer. Further studies are needed to define the respective mechanisms of action and the roles of SRA RNA and protein in breast tumorigenesis and tumor progression.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , RNA não Traduzido/biossíntese , Antineoplásicos Hormonais/farmacologia , Transformação Celular Neoplásica , Feminino , Perfilação da Expressão Gênica , Humanos , Recidiva Local de Neoplasia , Prognóstico , RNA Longo não Codificante , Receptores de Estrogênio/fisiologia , Análise de Sobrevida , Tamoxifeno/farmacologia , Transfecção , Células Tumorais Cultivadas
9.
Biol Chem ; 384(7): 1029-34, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12956419

RESUMO

Tissue factor pathway inhibitor-2 (TFPI-2), a Kunitz-type serine proteinase inhibitor associated with the extracellular matrix, has been shown to reduce tumor invasion. In the present study we identified the presence of a complete CpG island region spanning exon 1 and the three transcription initiation sites. We demonstrate that DNA demethylation by 5'-aza-2'-deoxycytidine restores TFPI-2 transcription in JAR choriocarcinoma cells. The effect of in vitro DNA methylation on TFPI-2 promoter function was also confirmed with TFPI-2/luciferase promoter constructs. Finally, we determined the precise methylation status of CpG sites of the TFPI-2 promoter in normal and tumor trophoblast cells using the bisulfite genomic sequencing method. We conclude that hypermethylation of the TFPI-2 gene is correlated with transcriptional silencing and that the TFPI-2 gene may be a candidate tumor suppressor gene.


Assuntos
Metilação de DNA , Inibidores Enzimáticos/farmacologia , Inativação Gênica , Glicoproteínas/genética , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Coriocarcinoma , Ilhas de CpG , Primers do DNA , Proteínas de Ligação a DNA/metabolismo , Glicoproteínas/metabolismo , Humanos , Luciferases/genética , Luciferases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
10.
Thromb Res ; 105(3): 217-23, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11927127

RESUMO

Tissue factor pathway inhibitor-2 (TFPI-2) displays structural similarities with TFPI-1, the major inhibitor of tissue factor (TF)/, factor VIIa. It is synthesized mostly by syncytiotrophoblast in the placenta, but its physiological functions are not fully understood. We studied the synthesis of TFPI-2 mRNA and that of TFPI-1 and TF in three human trophoblast cell lines, JAR, BeWo, and JEG-3. We first developed specific competitive reverse transcription-polymerase chain reaction (RT-PCR) assays for each gene studied using human umbilical vein endothelial cells (HUVEC). The three trophoblast cell lines strongly synthesized TF mRNA whereas the synthesis of TFPI-1 mRNA was very low. TFPI-2 mRNA was not detected in unstimulated or stimulated JAR cells. In contrast, JEG-3 and, to a lesser extent, BeWo produced significant amounts of TFPI-2 mRNA, which were significantly increased after stimulation with phorbol 12-myristate 13-acetate (PMA). However, tumor necrosis factor-alpha (TNF-alpha) had no effect on this synthesis. JEG-3 and BeWo are thus two cell lines that could be used to study TFPI-2 gene regulation and to investigate the role of TF, TFPI-1, and TFPI-2 during trophoblast differentiation.


Assuntos
Glicoproteínas/biossíntese , Trofoblastos/metabolismo , Linhagem Celular , Feminino , Glicoproteínas/genética , Humanos , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA