Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Food Res Int ; 195: 114932, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277219

RESUMO

Capsicum oleoresin has potential health benefits, particularly against obesity markers. Due to its high pungency, few studies have been done to explore the intake of this ingredient. The objective of this study was to use the Capsicum oleoresin (CO) microencapsulated into a high-fat diet to evaluate its metabolic effect on mice. Two formulation containing 15 % solids were prepared: the first (F1) with 5% CO and 95% emulsifier, and the second (F2) with 2.5% corn oil, 2.5% CO, and 95% emulsifier. These formulation were atomized in a spray dryer. Ultra-Performance Liquid Chromatography determined the capsaicin content for both formulations. Mice were divided into two groups: lean control (normocaloric AIN diet, n = 10) and high fat (HF diet: hypercaloric, n = 30), which were subdivided into three subgroups: HF control diet (n = 10); diet F1: HF + 20 % CO oleoresin microparticles (n = 10); and diet F2: HF + 20 % CO microparticles containing corn oil (n = 10). The animals treated with the microparticles showed lower glucose levels than the HF control. Mice fed with HF-containing CO microparticles had cholesterol blood levels similar to that of the lean group and lower (<100 mg/dL) than that of the HF control group (150 mg/dL). Capsicum oleoresin microparticles added to high-fat diets promoted lower weight gain and protected the liver against hepatic steatosis. Leptin levels for mice fed with HF diet plus CO microparticles averaged between 2 and 5 ng/ml, whereas the fat control group developed leptin resistance. Capsicum microparticles evidenced a protective effect against dyslipidemia compared to the fat control group, which suggests their use as a potential ingredient for the control of obesity.


Assuntos
Capsicum , Dieta Hiperlipídica , Obesidade , Extratos Vegetais , Animais , Capsicum/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Capsaicina/farmacologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/efeitos dos fármacos , Doenças Metabólicas/prevenção & controle
2.
Plant Foods Hum Nutr ; 78(4): 676-682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37721655

RESUMO

This study aimed to investigate the digestibility and bioaccessibility of spray-dried microparticles co-encapsulating paprika and cinnamon oleoresins using simulated gastrointestinal conditions. It focused on exploring the potential of these co-encapsulated active compounds, which possess diverse technological and functional properties, particularly within a food matrix, in order to enhance their bioavailability. Mayonnaise was selected as the food matrix for its ability to promote the diffusion of carotenoids, as most hydrophobic compounds are better absorbed in the intestine when accompanied by digestible lipids. Model spice mayonnaise, containing 0.5 wt% paprika and cinnamon microparticles content, was formulated in compliance with Brazilian regulations for spices, seasonings, and sauce formulations. Droplet size distribution, optical microscopy and fluorescence microscopy analyses were conducted on the microparticles, model spice mayonnaise, and standard mayonnaise both before and after in vitro gastric and intestinal digestion. Following digestion, all samples demonstrated droplet aggregation and coalescence. Remarkably, dispersed particles (37.40 ± 2.58%) and model spice mayonnaise (17.76 ± 0.07%) showed the highest release rate of free fatty acids (FFAs), indicating efficient lipid digestion. The study found that using mayonnaise as a delivery system significantly increased bioaccessibility (22.7%). This suggests that particles in an aqueous medium have low solubility, while the high lipid composition of mayonnaise facilitates the delivery of active compounds from carotenoids present in paprika and cinnamon oleoresin after digestion.


Assuntos
Capsicum , Carotenoides , Cinnamomum zeylanicum , Secagem por Atomização , Lipídeos , Digestão , Disponibilidade Biológica
3.
Int J Biol Macromol ; 236: 123828, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858090

RESUMO

This research evaluated the use of different polymer ratios, hydroxypropyl methylcellulose (HPMC) and methylcellulose (MC) with chitosan (CHI), in the production of emulgel by emulsification. The concentration was fixed at 2 % (w/v) for all polymers. 60/40 sunflower oil-in-water emulgels were made with a cellulosic polymer:chitosan ratio of (80:20), (70:30), and (60:40), respectively. The objective was to study how different proportions of a cellulosic polymer combined with chitosan can affect the stability, microstructure, and rheology of the emulgels to be used as potential oil carrier systems. Droplet size and microscopy results show oil-in-water (O/W) emulgels, and their interface was stabilized by mixing polymeric pairs, HPMC:CHI or MC:CHI. In the thermal analysis, it was identified in the entire temperature range studied (5 to 85 °C) that both emulgels, HPMC:CHI and MC:CHI, were presented as gels (G' > G″). Thus, the addition of CHI to the systems modified their gelling behavior. Microscopy revealed that the emulsions at the 7th and 10th week of storage showed similar characteristics to the fresh emulsion. Therefore, these results indicate that the emulgels present good thermal resistance, the predominance of elastic behavior, and can retain high concentrations of oil in their structure (96 to 99 %).


Assuntos
Quitosana , Polímeros , Polímeros/química , Quitosana/química , Emulsões/química , Géis/química , Reologia , Derivados da Hipromelose , Água/química
4.
Food Res Int ; 162(Pt B): 112164, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461368

RESUMO

The influence of whey protein isolate (WPI), maltodextrin (MD), and their combinations (MD:WPI, 1MD:3WPI, and 3MD:1WPI) as wall materials for the co-encapsulation of paprika and cinnamon oleoresins (OPC) by emulsification followed by spray drying (150 °C, 6 mL/min) were evaluated. The resulting microparticles were evaluated in terms of their physicochemical and morphological properties. They showed irregular surfaces with cavity formation, with mean particle diameter ranging from 15.42 to 33.46 µm. The powders had low Aw values (0.23-0.27); moisture values in the range of 4.45-5.19%; high solubility; and satisfactory encapsulation efficiency (>83%) except for the formulation containing only MD as wall material. After rehydration, the values for droplet sizes were similar to those of the emulsions before drying. Color parameters, carotenoid content, antioxidant activity, and size were evaluated during storage under different storage temperatures (25 and 45 °C) over 90 days. Significant degradation of active compounds over the storage period was observed at 45 °C, resulting in the color change and in greater moisture, Aw, and particle size. The 3MD:1WPI formulation can be considered the best, based on its physicochemical characteristics, good protection of the active compounds during storage, and low cost. The results suggest that these microparticles can be used as dyes and antioxidants in foods.


Assuntos
Capsicum , Cinnamomum zeylanicum , Secagem por Atomização , Proteínas do Soro do Leite , Antioxidantes
6.
Food Res Int ; 150(Pt A): 110777, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865792

RESUMO

Cinnamon and paprika oleoresins (CPO) are by-products of the spice Cinnamomum zeylanicum Blume and the fruit Capsicum annuum L., respectively. They present a hydrophobic nature and various active compounds that can act synergistically. However, they are both susceptible to degradation by light, oxygen, and temperature. This work aimed at identifying the synergistic effect of these oleoresin mixtures, incorporating them into emulsions and characterizing the obtained systems. The CPO concentration was 10%, and whey protein isolate (WPI), gum Arabic (GA), or maltodextrin (MD) were used as wall materials in different proportions, totalizing 30% solids. The synergistic effect was observed in the FRAP assay at a 1:1 CPO ratio, with its expected value being significantly higher than the values for individual oleoresins (p < 0.05). Emulsions containing GA were unstable, while the emulsions containing MD and WPI showed reduced droplet size and viscosity, remaining stable for 7 days. The sample with a 1:3 proportion of MD:WPI as wall material showed higher FRAP and ORAC antioxidant values (24.74 ± 0.83 and 28.77 ± 1.23 mmol TE/g of oleoresin, respectively) and 4.18 mg total carotenoids/g sample. These results suggest the emulsions have a protective effect on active compounds content and can be used as efficient delivery systems for food product applications.


Assuntos
Capsicum , Cinnamomum zeylanicum , Antioxidantes , Emulsões , Extratos Vegetais , Proteínas do Soro do Leite
7.
Molecules ; 26(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34577117

RESUMO

Electrostatic interaction between protein and polysaccharides could influence structured liquid oil stability when emulsification is used for this purpose. The objective of this work was to structure sunflower oil forming emulsions and High Internal Phase Emulsions (HIPEs) using pea protein (PP) and xanthan gum (XG) as a stabilizer, promoting or not their electrostatic attraction. The 60/40 oil-in-water emulsions were made varying the pH (3, 5, and 7) and PP:XG ratio (4:1, 8:1, and 12:1). To form HIPEs, samples were oven-dried and homogenized. The higher the pH, the smaller the droplet size (Emulsions: 15.60-43.96 µm and HIPEs: 8.74-20.38 µm) and the oil release after 9 weeks of storage at 5 °C and 25 °C (oil loss < 8%). All systems had weak gel-like behavior, however, the values of viscoelastic properties (G' and G″) increased with the increment of PP:XG ratio. Stable emulsions were obtained at pHs 5 and 7 in all PP:XG ratios, and at pH 3 in the ratio 4:1. Stable HIPEs were obtained at pH 7 in the ratios PP:XG 4:1, 8:1, and 12:1, and at pH 5 at PP:XG ratio 4:1. All these systems presented different characteristics that could be exploited for their application as fat substitutes.


Assuntos
Proteínas de Ervilha , Polissacarídeos Bacterianos , Emulsões , Reologia , Viscosidade
8.
J Food Sci Technol ; 58(10): 3765-3779, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34471300

RESUMO

Chia oil is susceptible to oxidation and to make this oil application into foodstuffs possible, chia-oil based microparticles were produced. Oil-in-water emulsions were produced by ultrasound and their stability was maximized using a central composite rotational design (X1: pea protein X2: oil concentration). Hi-Cap® 100 (HC) or maltodextrin (MD) were used as carrier agents in spray drying. The validated formulation with 13.50% (w/w) oil and 3.87% (w/w) pea protein presented the best stability conditions (no phase separation for 7 days, monomodal size distribution, and 1.59 µm of moda diameter). Particles showed high encapsulation efficiency (87.71 and 91.97% for MD and HC, respectively) and low water activity and moisture values (0.114-0.150% and 2.64-3.41%, respectively). HC particles exhibited better physicochemical and structural characteristics, apart from their good reconstitution, which shows the potential of this approach as a viable alternative for the use of rich-plant ingredients, such as chia oil and pea protein.

9.
Food Res Int ; 140: 109853, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648171

RESUMO

Spent brewer's yeast is a by-product rich in proteins, polysaccharides, and fibres. In addition to being nutritive, this material is available in large amounts and can be considered a cheap and sustainable alternative as a carrier material for microencapsulation. The objective of this work was to use the protein hydrolysate of spent brewer's yeast as an emulsifying agent and carrier material for the microencapsulation of sunflower oil by spray drying. A Central Composite Rotational Design (CCRD) was used to determine emulsion's optimal conditions: protein concentration (1.5-6.0%), oil concentration (10-25%) and pH (5.5-7.5) regarding Turbiscan Stability Index (TSI), droplet size and zeta-potential. The validated optimised emulsion containing 4.4% protein and 17.5% oil was produced at a pH value of 6.5. This formulation had a mean droplet diameter of 6.6 ± 0.3 µm, a ζ- potential of -29.0 ± 1.7 mV and a TSI (24 h) of 0.9 ± 0.2%. This emulsion was spray-dried with and without maltodextrin (M20) at 150 and 180 °C. The highest encapsulation efficiency was 55%, achieved at 180 °C with M20, 87% higher than dry powder at the same temperature, but without M20. The water activity of powders without M20 were 58% and 14% lower (0.20 and 0.17) than powders with M20 dried at 150 and 180 °C, (0.13 and 0.15) respectively. The mean particle size was close to 50 µm. The powder without M20, dried at 150 °C, showed the highest stability against oxidation (45 °C for 4 weeks), with a peroxide index of 311 meq of peroxide per kg of oil. Powder properties were evaluated by SEM and FT-IR. Kinetically stable emulsions and particles were produced from spent brewer's yeast ingredients, which were able to act as both carrier materials and emulsifiers, providing a more noble use for an important brewing residue.


Assuntos
Emulsificantes , Saccharomyces cerevisiae , Emulsões , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Food Res Int ; 137: 109359, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233062

RESUMO

Resveratrol is a stilbene phenolic associated with health-promoting properties such as antioxidant, anti-inflammatory and chemoprevention. Due to its chemical instability and low water solubility, microencapsulation represents a good alternative to provide better results when employing resveratrol as a nutraceutical ingredient. The main purpose of our work was to use low shear membrane emulsification to produce resveratrol-loaded emulsions of low polydispersity and integrate this process to spray drying to produce a powdered product. Resveratrol was dispersed with palm oil in a continuous phase obtained via Maillard reaction. We evaluated the influence of process conditions and phases composition on emulsions properties and performed the characterization of the spray-dried powder. Emulsions droplet size and span decreased as shear stress was increased. Higher dispersed phase fluxes provided increased droplet size polydispersity. Process conditions were set on 60.0 Pa shear stress and 70 L m-2h-1 of dispersed phase flux, obtaining emulsions with mean diameter around 30 µm and span of 0.76. Despite this relatively high droplet size of the infeed emulsions, the spray drying process resulted in particles with high encapsulation efficiency (97.97 ± 0.01%), and water content (~3.6%) and diameter (~10.2 µm) similar to particles obtained from fine emulsions in previously reported works.


Assuntos
Dessecação , Emulsões , Tamanho da Partícula , Pós , Resveratrol
11.
World J Microbiol Biotechnol ; 36(7): 95, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32583032

RESUMO

Development of new strategies to add-value to agro-industrial by-products are of environmental and economical importance. Innovative and low-cost sources of protein and bioactive peptides have been explored worldwide. Spent brewer's yeast (SBY) is the second most relevant by-product from the brewing industry, and despite its nutritional (about 50% protein, dry weight) and technological potential, it is still underused or needs to be disposed of. SBY cells need to be disrupted to release intracellular and cell wall proteins. This procedure has been performed using autolysis, glass bead milling, enzymatic hydrolysis and ultrasound processing. Enzymatic treatment is usually performed without prior purification and is a challenging process, which involves multiple factors, but has been successfully used as a strategy to add value to agro-industrial by-products. Scope and approach: in this review, we particularly focused on enzymatic hydrolysis as a strategy to promote SBY valorisation, illustrating the state-of-the-art processes used to produce protein extracts from this material as well as exploring fundamental concepts related to the particularities of yeast cell disruption and protein hydrolysis. Furthermore, innovative applications of value-added yeast by-products in food, biotechnological and pharmaceutical industries are presented and discussed. Key findings and conclusions: the discovery of valuable compounds found in spent yeasts as well as the development of new processing methodologies have been widening the possibilities of reuse and transformation of SBY as an ingredient and innovative matrix. Once released, yeast proteins and peptides may be applied as an innovative non-animal protein source or a functional and bioactive ingredient.


Assuntos
Manipulação de Alimentos , Valor Nutritivo , Saccharomyces cerevisiae/metabolismo , Ração Animal/análise , Cerveja/microbiologia , Biomassa , Parede Celular/metabolismo , Bases de Dados Factuais , Fermentação , Proteínas Fúngicas/metabolismo , Hidrólise , Ácido Cinurênico/metabolismo , Polifenóis/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
Food Res Int ; 113: 351-361, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30195528

RESUMO

Cinnamon bark oleoresin (CO) is a natural flavoring that has several biological properties and can act as an antimicrobial agent. However, oleoresins are susceptible to degradation by light, oxygen and temperature. Thus, the objective of this work was the production and characterization of microparticles loaded with CO obtained by the spray chilling technique. Hardfat (PH) and palm oil (PO) were used as carriers in different proportions: 100:0; 80:20; 60:40, respectively. The active concentration was 1 and 2%. Solid lipid microparticles (SLM) were stored at 25 and 45°C having their polymorphism, retention capacity of the volatile compounds and antimicrobial capacity assessed over 28 days. CO presented cinnamaldehyde (Cn), O-methoxy cinnamaldehyde (OmCn) and coumarin (Co) as the major volatile components. The minimum inhibitory concentration (MIC) of the CO against molds, yeasts and Gram-negative bacteria was of 0.1% (v/v), for every microorganism. In the SLM characterization there was a significant size variation, with a mean diameter (d 0.5) in the range of 8-72 µm. Most of the formulations showed crystals in the polymorphic form ß '. The formulation containing only PH as the carrier agent and 2% CO was able to better retain the volatile compounds. During the storage period, formulations F2 and F3, containing proportions of HP and OP of 80:20 and 60:40, respectively, and 2% CO, showed the best stabilities in relation to the concentration of Cn. The antimicrobial activity of the SLM against Candida pseudointermedia and Penicillium paneum, evaluated by the diameter of inhibition zone, increased over the 28 days of storage.


Assuntos
Anti-Infecciosos , Cinnamomum zeylanicum/química , Portadores de Fármacos/química , Lipídeos/química , Extratos Vegetais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Candida/efeitos dos fármacos , Estabilidade de Medicamentos , Testes de Sensibilidade Microbiana , Óleo de Palmeira/química , Penicillium/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Temperatura
13.
Food Res Int ; 109: 472-480, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29803473

RESUMO

Ginger oleoresin (GO) can be encapsulated within a protective lipid matrix in order to facilitate handling, provide protection against the external environment or promote the stability of GO compounds. The aim of this study was to verify the ability of solid lipid microparticles (SLMs) containing GO (10-20% w/w) to maintain or improve the stability of ginger compounds, by monitoring SLMs' characteristics during storage at different temperatures (25 and 40 °C). The lipids matrix of SLMs were composed by stearic acid (90, 80, 75, 65% w/w) and oleic acid (15% w/w), The crystalline structure of the particles after 84 days of storage did not present any polymorphic alterations, while presenting spherical form upon scanning by electron microscopy. SLMs containing oleic acid showed degradation of 6-gingerol when stored at 40 °C. Major volatile compounds had better stability in particles containing oleic acid. Kinetics of volatiles release resulted in a diffusion mechanism. SLMs showed better stability of GO compounds during storage at 25 °C than un-encapsulated GO and could, therefore, improve its distribution in foods due to its conversion to powder.


Assuntos
Conservação de Alimentos/métodos , Armazenamento de Alimentos/métodos , Odorantes , Ácido Oleico/química , Extratos Vegetais/isolamento & purificação , Ácidos Esteáricos/química , Temperatura , Compostos Orgânicos Voláteis/isolamento & purificação , Zingiber officinale/química , Catecóis/isolamento & purificação , Cristalização , Álcoois Graxos/isolamento & purificação , Guaiacol/análogos & derivados , Guaiacol/isolamento & purificação , Cinética , Tamanho da Partícula , Pós , Propriedades de Superfície
14.
Ciênc. agrotec., (Impr.) ; 35(4): 765-773, ago. 2011. ilus, tab
Artigo em Português | LILACS | ID: lil-597699

RESUMO

Objetivou-se, neste trabalho, estudar a influência do lactato de cálcio e do tipo de açúcar nas propriedades mecânicas e na estrutura celular de pedaços de melão desidratados osmoticamente. O processo foi conduzido por duas horas com agitação de 120 rpm e temperatura controlada (30º C), utilizando-se soluções desidratantes de sacarose ou maltose a 40ºBrix, contendo lactato de cálcio em concentrações de 0, 0,5, 1,0 e 1,5 por cento (p/v). As amostras foram submetidas às determinações de perda de água, ganho de sólidos, incorporação de cálcio, propriedades mecânicas (tensão e deformação na ruptura) e microscopia óptica. Os ensaios com maltose, em ação conjunta com o sal, promoveram uma maior perda de água e um menor ganho de sólidos. A adição de lactato de cálcio na solução osmótica de sacarose ou maltose resultou em maiores valores de tensão na ruptura para as frutas, sendo que tal aumento foi mais pronunciado nos ensaios com sacarose, devido à maior incorporação de cálcio observada nesses tratamentos. O lactato de cálcio mostrou-se eficiente na preservação da estrutura celular das amostras, quando utilizado em concentrações de até 1,0 por cento. A maltose apresentou um maior efeito protetor na manutenção da funcionalidade da membrana celular, enquanto que o processo realizado apenas com soluções de sacarose, assim como os ensaios realizados com concentração de sal igual a 1,5 por cento provocaram danos na parede celular e intensa plasmólise do citoplasma.


The purpose of this work was to study the influence of calcium lactate and sugar type on mechanical properties and cellular structure of osmodehydrated melon pieces. The process was carried out for two hours under controlled temperature (30º C) and agitation (120 rpm), using a 40ºBrix sucrose or maltose solution containing calcium lactate (0 to 2,0 percent). Samples were analyzed with respect to water loss, solids and calcium gain, mechanical properties (stress and strain at rupture) and structure by light microscopy. Maltose treatments in combination with the salt action promoted higher water loss and lower solids gain rates. The calcium lactate addition in the sucrose or maltose solution resulted in higher stress at rupture values. This increase was more pronounced for sucrose treatments, due to the higher calcium uptake observed in these experiments. Calcium lactate was efficient in the maintenance of melon cellular structure when used at concentrations up to 1,0 percent. Maltose showed a higher protector effect in cellular membrane functionality, while the treatment performed only with sucrose solution as well as both treatments with salt concentration at 1,5 percentcaused an intense cytoplasm plasmolysis and cell wall damages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA