Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 101(1): 250-62, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17298389

RESUMO

Previously, we reported that TRPV1, the vanilloid receptor, interacts with soluble alphabeta-tubulin dimers as well as microtubules via its C-terminal cytoplasmic domain. The interacting region of TRPV1, however, has not been defined. We found that the TRPV1 C-terminus preferably interacts with beta-tubulin and less with alpha-tubulin. Using a systematic deletion approach and biotinylated-peptides we identified two tubulin-binding sites present in TRPV1. These two sequence stretches are highly conserved in all known mammalian TRPV1 orthologues and partially conserved in some of the TRPV1 homologues. As these sequence stretches are not similar to any known tubulin-binding sequences, we conclude that TRPV1 interacts with tubulin and microtubule through two novel tubulin-binding motifs.


Assuntos
Membrana Celular/metabolismo , Microtúbulos/metabolismo , Canais de Cátion TRPV/metabolismo , Tubulina (Proteína)/metabolismo , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos/fisiologia , Animais , Humanos , Dados de Sequência Molecular , Proteínas de Neurofilamentos/química , Proteínas de Neurofilamentos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Canais de Cátion TRPV/genética , Tubulina (Proteína)/química
2.
Eur J Neurosci ; 24(2): 527-34, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16836642

RESUMO

Protein kinase C epsilon (PKCepsilon) is an important intracellular signaling molecule in primary afferent nociceptors, implicated in acute and chronic inflammatory as well as neuropathic pain. In behavioral experiments inflammatory mediators produce PKCepsilon-dependent hyperalgesia only in male rats. The mechanism underlying this sexual dimorphism is unknown. We show that the hormone environment of female rats changes the nociceptive signaling in the peripheral sensory neuron. This change is maintained in culture also in the absence of a gender-simulating environment. Stimulation of beta(2)-adrenergic receptors (beta(2)-AR) leads to PKCepsilon activation in cultured dorsal root ganglia (DRG) neurons derived from male but not from female rats. Addition of estrogen to male DRG neurons produces a switch to the female phenotype, namely abrogation of beta(2)-AR-initiated activation of PKCepsilon. Estrogen interferes downstream of the beta(2)-AR with the signaling pathway leading from exchange protein activated by cAMP (Epac) to PKCepsilon. The interfering action is fast indicating a transcriptional-independent mechanism. Estrogen has a dual effect on PKCepsilon. If applied before beta(2)-AR or Epac stimulation, estrogen abrogates the activation of PKCepsilon. In contrast, estrogen applied alone leads to a brief translocation of PKCepsilon. Also in vivo the activity of estrogen depends on the stimulation context. In male rats, intradermal injection of an Epac activator or estrogen alone induces mechanical hyperalgesia through a PKCepsilon-dependent mechanism. In contrast, injection of estrogen preceding the activation of Epac completely abrogates the Epac-induced mechanical hyperalgesia. Our results suggest that gender differences in nociception do not reflect the use of generally different mechanisms. Instead, a common set of signaling pathways can be modulated by hormones.


Assuntos
Estrogênios/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Neurônios Aferentes/metabolismo , Nociceptores/metabolismo , Proteína Quinase C-épsilon/metabolismo , Agonistas de Receptores Adrenérgicos beta 2 , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Estrogênios/farmacologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Neurônios Aferentes/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores Adrenérgicos beta 2/metabolismo , Caracteres Sexuais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
3.
J Neurosci ; 25(26): 6119-26, 2005 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-15987941

RESUMO

The epsilon isoform of protein kinase C (PKCepsilon) has emerged as a critical second messenger in sensitization toward mechanical stimulation in models of neuropathic (diabetes, alcoholism, and cancer therapy) as well as acute and chronic inflammatory pain. Signaling pathways leading to activation of PKCepsilon remain unknown. Recent results indicate signaling from cAMP to PKC. A mechanism connecting cAMP and PKC, two ubiquitous, commonly considered separate pathways, remains elusive. We found that, in cultured DRG neurons, signaling from cAMP to PKCepsilon is not mediated by PKA but by the recently identified cAMP-activated guanine exchange factor Epac. Epac, in turn, was upstream of phospholipase C (PLC) and PLD, both of which were necessary for translocation and activation of PKCepsilon. This signaling pathway was specific to isolectin B4-positive [IB4(+)] nociceptors. Also, in a behavioral model, cAMP produced mechanical hyperalgesia (tenderness) through Epac, PLC/PLD, and PKCepsilon. By delineating this signaling pathway, we provide a mechanism for cAMP-to-PKC signaling, give proof of principle that the mitogen-activated protein kinase pathway-activating protein Epac also stimulates PKC, describe the first physiological function unique for the IB4(+) subpopulation of sensory neurons, and find proof of principle that G-protein-coupled receptors can activate PKC not only through the G-proteins alpha(q) and betagamma but also through alpha(s).


Assuntos
AMP Cíclico/fisiologia , Glicoproteínas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Inflamação/fisiopatologia , Lectinas/metabolismo , Neurônios/fisiologia , Dor/fisiopatologia , Proteína Quinase C/metabolismo , Animais , Gânglios Espinais/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Versicanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA