Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 7(76): eabo3420, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36240285

RESUMO

Some hematological malignancies such as multiple myeloma are inherently resistant to immune-mediated antitumor responses, the cause of which remains unknown. Allogeneic bone marrow transplantation (alloBMT) is the only curative immunotherapy for hematological malignancies due to profound graft-versus-tumor (GVT) effects, but relapse remains the major cause of death. We developed murine models of alloBMT where the hematological malignancy is either sensitive [acute myeloid leukemia (AML)] or resistant (myeloma) to GVT effects. We found that CD8+ T cell exhaustion in bone marrow was primarily alloantigen-driven, with expression of inhibitory ligands present on myeloma but not AML. Because of this tumor-independent exhaustion signature, immune checkpoint inhibition (ICI) in myeloma exacerbated graft-versus-host disease (GVHD) without promoting GVT effects. Administration of post-transplant cyclophosphamide (PT-Cy) depleted donor T cells with an exhausted phenotype and spared T cells displaying a stem-like memory phenotype with chromatin accessibility present in cytokine signaling genes, including the interleukin-18 (IL-18) receptor. Whereas ICI with anti-PD-1 or anti-TIM-3 remained ineffective after PT-Cy, administration of a decoy-resistant IL-18 (DR-18) strongly enhanced GVT effects in both myeloma and leukemia models, without exacerbation of GVHD. We thus defined mechanisms of resistance to T cell-mediated antitumor effects after alloBMT and described an immunotherapy approach targeting stem-like memory T cells to enhance antitumor immunity.


Assuntos
Doença Enxerto-Hospedeiro , Neoplasias Hematológicas , Mieloma Múltiplo , Animais , Cromatina , Ciclofosfamida , Inibidores de Checkpoint Imunológico , Interleucina-18 , Isoantígenos , Células T de Memória , Camundongos , Mieloma Múltiplo/terapia , Transplante Homólogo
2.
Sci Transl Med ; 12(525)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915300

RESUMO

Cancer-associated thrombocytosis and high concentrations of circulating transforming growth factor-ß1 (TGF-ß1) are frequently observed in patients with progressive cancers. Using genetic and pharmacological approaches, we show a direct link between thrombin catalytic activity and release of mature TGF-ß1 from platelets. We found that thrombin cleaves glycoprotein A repetitions predominant (GARP), a cell surface docking receptor for latent TGF-ß1 (LTGF-ß1) on platelets, resulting in liberation of active TGF-ß1 from the GARP-LTGF-ß1 complex. Furthermore, systemic inhibition of thrombin obliterates TGF-ß1 maturation in platelet releasate and rewires the tumor microenvironment toward favorable antitumor immunity, which translates into efficient cancer control either alone or in combination with programmed cell death 1-based immune checkpoint blockade therapy. Last, we demonstrate that soluble GARP and GARP-LTGF-ß1 complex are present in the circulation of patients with cancer. Together, our data reveal a mechanism of cancer immune evasion that involves thrombin-mediated GARP cleavage and the subsequent TGF-ß1 release from platelets. We propose that blockade of GARP cleavage is a valuable therapeutic strategy to overcome cancer's resistance to immunotherapy.


Assuntos
Plaquetas/metabolismo , Evasão da Resposta Imune , Proteínas de Ligação a TGF-beta Latente/metabolismo , Proteínas de Membrana/metabolismo , Proteólise , Trombina/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Carcinogênese/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Progressão da Doença , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Evasão da Resposta Imune/efeitos dos fármacos , Proteínas de Ligação a TGF-beta Latente/sangue , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
3.
J Biol Chem ; 294(44): 16010-16019, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501246

RESUMO

The hsp90 chaperones govern the function of essential client proteins critical for normal cell function as well as cancer initiation and progression. Hsp90 activity is driven by ATP, which binds to the N-terminal domain and induces large conformational changes that are required for client maturation. Inhibitors targeting the ATP-binding pocket of the N-terminal domain have anticancer effects, but most bind with similar affinity to cytosolic Hsp90α and Hsp90ß, endoplasmic reticulum Grp94, and mitochondrial Trap1, the four cellular hsp90 paralogs. Paralog-specific inhibitors may lead to drugs with fewer side effects. The ATP-binding pockets of the four paralogs are flanked by three side pockets, termed sites 1, 2, and 3, which differ between the paralogs in their accessibility to inhibitors. Previous insights into the principles governing access to sites 1 and 2 have resulted in development of paralog-selective inhibitors targeting these sites, but the rules for selective targeting of site 3 are less clear. Earlier studies identified 5'N-ethylcarboxamido adenosine (NECA) as a Grp94-selective ligand. Here we use NECA and its derivatives to probe the properties of site 3. We found that derivatives that lengthen the 5' moiety of NECA improve selectivity for Grp94 over Hsp90α. Crystal structures reveal that the derivatives extend further into site 3 of Grp94 compared with their parent compound and that selectivity is due to paralog-specific differences in ligand pose and ligand-induced conformational strain in the protein. These studies provide a structural basis for Grp94-selective inhibition using site 3.


Assuntos
Adenosina-5'-(N-etilcarboxamida)/farmacologia , Glicoproteínas de Membrana/química , Simulação de Acoplamento Molecular , Adenosina-5'-(N-etilcarboxamida)/análogos & derivados , Regulação Alostérica , Sítios de Ligação , Humanos , Glicoproteínas de Membrana/metabolismo , Ligação Proteica
4.
Proteins ; 87(10): 869-877, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31141217

RESUMO

Hsp90α and Hsp90ß are implicated in a number of cancers and neurodegenerative disorders but the lack of selective pharmacological probes confounds efforts to identify their individual roles. Here, we analyzed the binding of an Hsp90α-selective PU compound, PU-11-trans, to the two cytosolic paralogs. We determined the co-crystal structures of Hsp90α and Hsp90ß bound to PU-11-trans, as well as the structure of the apo Hsp90ß NTD. The two inhibitor-bound structures reveal that Ser52, a nonconserved residue in the ATP binding pocket in Hsp90α, provides additional stability to PU-11-trans through a water-mediated hydrogen-bonding network. Mutation of Ser52 to alanine, as found in Hsp90ß, alters the dissociation constant of Hsp90α for PU-11-trans to match that of Hsp90ß. Our results provide a structural explanation for the binding preference of PU inhibitors for Hsp90α and demonstrate that the single nonconserved residue in the ATP-binding pocket may be exploited for α/ß selectivity.


Assuntos
Aminoácidos/metabolismo , Descoberta de Drogas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Purinas/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Desenvolvimento de Medicamentos , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Humanos , Mutação , Conformação Proteica , Purinas/química , Homologia de Sequência
5.
Cell Rep ; 20(12): 2800-2809, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930677

RESUMO

Hsp90 chaperones undergo ATP-driven conformational changes during the maturation of client proteins, populating a closed state upon ATP binding in which the N-terminal domains of the homodimer form a second inter-protomer dimer interface. A structure of GRP94, the endoplasmic reticulum hsp90, in a closed conformation has not been described, and the determinants that regulate closure are not well understood. Here, we determined the 2.6-Å structure of AMPPNP-bound GRP94 in the closed dimer conformation. The structure includes the pre-N domain, a region preceding the N-terminal domain that is highly conserved in GRP94, but not in other hsp90s. We show that the GRP94 pre-N domain is essential for client maturation, and we identify the pre-N domain as an important regulator of ATPase rates and dimer closure. The structure also reveals a GRP94:polypeptide interaction that partially mimics a client-bound state. The results provide structural insight into the ATP-dependent client maturation process of GRP94.


Assuntos
Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Sítios de Ligação , Cães , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
6.
PLoS One ; 11(11): e0166271, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27824935

RESUMO

Grp94 and Hsp90 are the ER and cytoplasmic paralog members, respectively, of the hsp90 family of molecular chaperones. The structural and biochemical differences between Hsp90 and Grp94 that allow each paralog to efficiently chaperone its particular set of clients are poorly understood. The two paralogs exhibit a high degree of sequence similarity, yet also display significant differences in their quaternary conformations and ATPase activity. In order to identify the structural elements that distinguish Grp94 from Hsp90, we characterized the similarities and differences between the two proteins by testing the ability of Hsp90/Grp94 chimeras to functionally substitute for the wild-type chaperones in vivo. We show that the N-terminal domain or the combination of the second lobe of the Middle domain plus the C-terminal domain of Grp94 can functionally substitute for their yeast Hsp90 counterparts but that the equivalent Hsp90 domains cannot functionally replace their counterparts in Grp94. These results also identify the interface between the Middle and C-terminal domains as an important structural unit within the Hsp90 family.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Cães , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Domínios Proteicos
7.
Nat Commun ; 7: 10607, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26837705

RESUMO

DNA-binding proteins search for specific targets via facilitated diffusion along a crowded genome. However, little is known about how crowded DNA modulates facilitated diffusion and target recognition. Here we use DNA curtains and single-molecule fluorescence imaging to investigate how Msh2-Msh3, a eukaryotic mismatch repair complex, navigates on crowded DNA. Msh2-Msh3 hops over nucleosomes and other protein roadblocks, but maintains sufficient contact with DNA to recognize a single lesion. In contrast, Msh2-Msh6 slides without hopping and is largely blocked by protein roadblocks. Remarkably, the Msh3-specific mispair-binding domain (MBD) licences a chimeric Msh2-Msh6(3MBD) to bypass nucleosomes. Our studies contrast how Msh2-Msh3 and Msh2-Msh6 navigate on a crowded genome and suggest how Msh2-Msh3 locates DNA lesions outside of replication-coupled repair. These results also provide insights into how DNA repair factors search for DNA lesions in the context of chromatin.


Assuntos
Dano ao DNA , Reparo de Erro de Pareamento de DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Reparo do DNA , Histonas/metabolismo , Microscopia de Fluorescência , Proteína 3 Homóloga a MutS , Nucleossomos/metabolismo , Pontos Quânticos , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA