Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4150, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851064

RESUMO

The development of therapeutic agonists for G protein-coupled receptors (GPCRs) is hampered by the propensity of GPCRs to couple to multiple intracellular signalling pathways. This promiscuous coupling leads to numerous downstream cellular effects, some of which are therapeutically undesirable. This is especially the case for adenosine A1 receptors (A1Rs) whose clinical potential is undermined by the sedation and cardiorespiratory depression caused by conventional agonists. We have discovered that the A1R-selective agonist, benzyloxy-cyclopentyladenosine (BnOCPA), is a potent and powerful analgesic but does not cause sedation, bradycardia, hypotension or respiratory depression. This unprecedented discrimination between native A1Rs arises from BnOCPA's unique and exquisitely selective activation of Gob among the six Gαi/o subtypes, and in the absence of ß-arrestin recruitment. BnOCPA thus demonstrates a highly-specific Gα-selective activation of the native A1R, sheds new light on GPCR signalling, and reveals new possibilities for the development of novel therapeutics based on the far-reaching concept of selective Gα agonism.


Assuntos
Analgesia , Depressão , Adenosina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1
2.
Redox Biol ; 21: 101077, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30593979

RESUMO

Genes that are highly conserved in food seeking behaviour, such as protein kinase G (PKG), are of interest because of their potential role in the global obesity epidemic. PKG1α can be activated by binding of cyclic guanosine monophosphate (cGMP) or oxidant-induced interprotein disulfide bond formation between the two subunits of this homodimeric kinase. PKG1α activation by cGMP plays a role in reward and addiction through its actions in the ventral tegmental area (VTA) of the brain. 'Redox dead' C42S PKG1α knock-in (KI) mice, which are fully deficient in oxidant-induced disulfide-PKG1α formation, display increased food seeking and reward behaviour compared to wild-type (WT) littermates. Rewarding monoamines such as dopamine, which are released during feeding, are metabolised by monoamine oxidase to generate hydrogen peroxide that was shown to mediate PKG1α oxidation. Indeed, inhibition of monoamine oxidase, which prevents it producing hydrogen peroxide, attenuated PKG1α oxidation and increased sucrose preference in WT, but not KI mice. The deficient reward phenotype of the KI mice was rescued by expressing WT kinase that can form the disulfide state in the VTA using an adeno-associated virus, consistent with PKG1α oxidation providing a break on feeding behaviour. In conclusion, disulfide-PKG1α in VTA neurons acts as a negative regulator of feeding and therefore may provide a novel therapeutic target for obesity.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Comportamento Alimentar , Oxirredução , Recompensa , Animais , Comportamento Animal , Dissulfetos/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Levodopa/metabolismo , Levodopa/farmacologia , Masculino , Camundongos , Camundongos Knockout , Monoaminoxidase/metabolismo , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
3.
PLoS One ; 11(12): e0167861, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936179

RESUMO

Complex mechanisms that detect changes in brainstem parenchymal PCO2/[H+] and trigger adaptive changes in lung ventilation are responsible for central respiratory CO2 chemosensitivity. Previous studies of chemosensory signalling pathways suggest that at the level of the ventral surface of the medulla oblongata (VMS), CO2-induced changes in ventilation are (at least in part) mediated by the release and actions of ATP and/or acetylcholine (ACh). Here we performed simultaneous real-time biosensor recordings of CO2-induced ATP and ACh release from the VMS in vivo and in vitro, to test the hypothesis that central respiratory CO2 chemosensory transduction involves simultaneous recruitment of purinergic and cholinergic signalling pathways. In anaesthetised and artificially ventilated rats, an increase in inspired CO2 triggered ACh release on the VMS with a peak amplitude of ~5 µM. Release of ACh was only detected after the onset of CO2-induced activation of the respiratory activity and was markedly reduced (by ~70%) by ATP receptor blockade. In horizontal slices of the VMS, CO2-induced release of ATP was reliably detected, whereas CO2 or bath application of ATP (100 µM) failed to trigger release of ACh. These results suggest that during hypercapnia locally produced ATP induces or potentiates the release of ACh (likely from the medullary projections of distal groups of cholinergic neurones), which may also contribute to the development and/or maintenance of the ventilatory response to CO2.


Assuntos
Acetilcolina/metabolismo , Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/fisiologia , Bulbo/metabolismo , Animais , Técnicas Biossensoriais , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley
4.
J Neurosci ; 35(13): 5284-92, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834053

RESUMO

The mechanisms of neurovascular coupling underlying generation of BOLD fMRI signals remain incompletely understood. It has been proposed that release of vasoactive substances by astrocytes couples neuronal activity to changes in cerebrovascular blood flow. However, the role of astrocytes in fMRI responses remains controversial. Astrocytes communicate via release of ATP, and here we tested the hypothesis that purinergic signaling plays a role in the mechanisms underlying fMRI. An established fMRI paradigm was used to trigger BOLD responses in the forepaw region of the somatosensory cortex (SSFP) of an anesthetized rat. Forepaw stimulation induced release of ATP in the SSFP region. To interfere with purinergic signaling by promoting rapid breakdown of the vesicular and/or released ATP, a lentiviral vector was used to express a potent ectonucleotidase, transmembrane prostatic acid phosphatase (TMPAP), in the SSFP region. TMPAP expression had no effect on resting cerebral blood flow, cerebrovascular reactivity, and neuronal responses to sensory stimulation. However, TMPAP catalytic activity markedly reduced the magnitude of BOLD fMRI responses triggered in the SSFP region by forepaw stimulation. Facilitated ATP breakdown could result in accumulation of adenosine. However, blockade of A1 receptors had no effect on BOLD responses and did not reverse the effect of TMPAP. These results suggest that purinergic signaling plays a significant role in generation of BOLD fMRI signals. We hypothesize that astrocytes activated during periods of enhanced neuronal activity release ATP, which propagates astrocytic activation, stimulates release of vasoactive substances and dilation of cerebral vasculature.


Assuntos
Trifosfato de Adenosina/metabolismo , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética , Transdução de Sinais , Córtex Somatossensorial/fisiologia , Fosfatase Ácida , Trifosfato de Adenosina/antagonistas & inibidores , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Estimulação Elétrica , Membro Anterior/fisiologia , Neuroimagem Funcional , Masculino , Microinjeções , Proteínas Tirosina Fosfatases/administração & dosagem , Proteínas Tirosina Fosfatases/genética , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/metabolismo
5.
J Physiol ; 588(Pt 20): 3921-31, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20736419

RESUMO

We have previously shown connexin mediated CO(2)-dependent ATP release from the surface of the medulla oblongata. Given the localization of connexin 26 (Cx26) to the chemosensing areas of the medulla, we have tested in a heterologous expression system (HeLa cells) whether Cx26 may be sensitive to changes in PCO2. Cx26 responded to an increase in PCO2 at constant extracellular pH by opening and to a decrease in PCO2 by closing. Furthermore, Cx26 was partially activated at a physiological PCO2 of around 40 mmHg. Cx26 in isolated patches responded to changes in PCO2, suggesting direct CO(2) sensitivity of the hemichannel to CO(2). Heterologous expression of Cx26 in HeLa cells was sufficient to endow them with the capacity to release ATP in a CO(2)-sensitive manner. We have examined other heterologously expressed connexins for their ability to respond to changes in PCO2. The closely related ß connexins Cx30 and Cx32 also displayed sensitivity to changes in PCO2, but with slightly different characteristics from Cx26. The more distant Cx43 exhibited CO(2)-dependent closing (possibly mediated through intracellular acidification), while Cx36 displayed no CO(2) sensitivity. These surprising findings suggest that connexins may play a hitherto unappreciated variety of signalling roles, and that Cx26 and related ß connexins may impart direct sensitivity to CO(2) throughout the brain.


Assuntos
Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/metabolismo , Conexinas/metabolismo , Transdução de Sinais/fisiologia , Células Cultivadas , Conexina 26 , Junções Comunicantes/metabolismo , Células HeLa , Humanos , Imuno-Histoquímica , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Physiol ; 588(Pt 20): 3901-20, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20736421

RESUMO

Arterial PCO2, a major determinant of breathing, is detected by chemosensors located in the brainstem. These are important for maintaining physiological levels of PCO2 in the blood and brain, yet the mechanisms by which the brain senses CO(2) remain controversial. As ATP release at the ventral surface of the brainstem has been causally linked to the adaptive changes in ventilation in response to hypercapnia, we have studied the mechanisms of CO(2)-dependent ATP release in slices containing the ventral surface of the medulla oblongata. We found that CO(2)-dependent ATP release occurs in the absence of extracellular acidification and correlates directly with the level of PCO2. ATP release is independent of extracellular Ca(2+) and may occur via the opening of a gap junction hemichannel. As agents that act on connexin channels block this release, but compounds selective for pannexin-1 have no effect, we conclude that a connexin hemichannel is involved in CO(2)-dependent ATP release. We have used molecular, genetic and immunocytochemical techniques to demonstrate that in the medulla oblongata connexin 26 (Cx26) is preferentially expressed near the ventral surface. The leptomeninges, subpial astrocytes and astrocytes ensheathing penetrating blood vessels at the ventral surface of the medulla can be loaded with dye in a CO(2)-dependent manner, suggesting that gating of a hemichannel is involved in ATP release. This distribution of CO(2)-dependent dye loading closely mirrors that of Cx26 expression and colocalizes to glial fibrillary acidic protein (GFAP)-positive cells. In vivo, blockers with selectivity for Cx26 reduce hypercapnia-evoked ATP release and the consequent adaptive enhancement of breathing. We therefore propose that Cx26-mediated release of ATP in response to changes in PCO2 is an important mechanism contributing to central respiratory chemosensitivity.


Assuntos
Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/metabolismo , Conexinas/metabolismo , Bulbo/metabolismo , Análise de Variância , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Conexina 26 , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Ratos , Ratos Sprague-Dawley , Respiração , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
J Physiol ; 586(16): 3963-78, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18617567

RESUMO

The Breuer-Hering inflation reflex is initiated by activation of the slowly adapting pulmonary stretch receptor afferents (SARs), which monosynaptically activate second-order relay neurones in the dorsal medullary nucleus of the solitary tract (NTS). Here we demonstrate that during lung inflation SARs release both ATP and glutamate from their central terminals to activate these NTS neurones. In anaesthetized and artificially ventilated rats, ATP- and glutamate-selective microelectrode biosensors placed in the NTS detected rhythmic release of both transmitters phase-locked to lung inflation. This release of ATP and glutamate was independent of the centrally generated respiratory rhythm and could be reversibly abolished during the blockade of the afferent transmission in the vagus nerve by topical application of local anaesthetic. Microionophoretic application of ATP increased the activity of all tested NTS second-order relay neurones which receive monosynaptic inputs from the SARs. Unilateral microinjection of ATP into the NTS site where pulmonary stretch receptor afferents terminate produced central apnoea, mimicking the effect of lung inflation. Application of P2 and glutamate receptor antagonists (pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulphonic acid, suramin and kynurenic acid) significantly decreased baseline lung inflation-induced firing of the second-order relay neurones. These data demonstrate that ATP and glutamate are released in the NTS from the central terminals of the lung stretch receptor afferents, activate the second-order relay neurones and hence mediate the key respiratory reflex - the Breuer-Hering inflation reflex.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácido Glutâmico/metabolismo , Pulmão/inervação , Pulmão/fisiologia , Nervo Frênico/fisiologia , Reflexo de Estiramento/fisiologia , Núcleo Solitário/fisiologia , Vias Aferentes/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA