Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 153: 213582, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37591178

RESUMO

The anticancer potential of quercetin (Q), a plant-derived flavonoid, and underlining molecular mechanisms are widely documented in cellular models in vitro. However, biomedical applications of Q are limited due to its low bioavailability and hydrophilicity. In the present study, the electrospinning approach was used to obtain polylactide (PLA) and PLA and polyethylene oxide (PEO)-based micro- and nanofibers containing Q, namely PLA/Q and PLA/PEO/Q, respectively, in a form of non-woven fabrics. The structure and physico-chemical properties of Q-loaded fibers were characterized by scanning electron and atomic force microscopy (SEM and AFM), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), goniometry and FTIR and Raman spectroscopy. The anticancer action of PLA/Q and PLA/PEO/Q was revealed using two types of cancer and nine cell lines, namely osteosarcoma (MG-63, U-2 OS, SaOS-2 cells) and breast cancer (SK-BR-3, MCF-7, MDA-MB-231, MDA-MB-468, Hs 578T, and BT-20 cells). The anticancer activity of Q-loaded fibers was more pronounced than the action of free Q. PLA/Q and PLA/PEO/Q promoted cell cycle arrest, oxidative stress and apoptotic cell death that was not overcome by heat shock protein (HSP)-mediated adaptive response. PLA/Q and PLA/PEO/Q were biocompatible and safe, as judged by in vitro testing using normal fibroblasts. We postulate that PLA/Q and PLA/PEO/Q with Q releasing activity can be considered as a novel and more efficient micro- and nano-system to deliver Q and eliminate phenotypically different cancer cells.


Assuntos
Neoplasias Ósseas , Quercetina , Humanos , Quercetina/farmacologia , Flavonoides , Apoptose , Disponibilidade Biológica
2.
Arch Immunol Ther Exp (Warsz) ; 69(1): 26, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34536148

RESUMO

Adjuvant chemotherapy with 5-fluorouracil (5-FU) does not improve survival of patients suffering from a form of colorectal cancer (CRC) characterized by high level of microsatellite instability (MSI-H). Given the importance of autophagy and multi-drug-resistant (MDR) proteins in chemotherapy resistance, as well as the role of casein kinase 1-alpha (CK1α) in the regulation of autophagy, we tested the combined effect of 5-FU and CK1α inhibitor (D4476) on HCT116 cells as a model of MSI-H colorectal cancer. To achieve this goal, the gene expression of Beclin1 and MDR genes, ABCG2 and ABCC3 were analyzed using quantitative real-time polymerase chain reaction. We used immunoblotting to measure autophagy flux (LC3, p62) and flow cytometry to detect apoptosis. Our findings showed that combination treatment with 5-FU and D4476 inhibited autophagy flux. Moreover, 5-FU and D4476 combination therapy induced G2, S and G1 phase arrests and it depleted mRNA of both cell proliferation-related genes and MDR-related genes (ABCG2, cyclin D1 and c-myc). Hence, our data indicates that targeting of CK1α may increase the sensitivity of HCT116 cells to 5-FU. To our knowledge, this is the first description of sensitization of CRC cells to 5-FU chemotherapy by CK1α inhibitor.


Assuntos
Caseína Quinase Ialfa , Neoplasias Colorretais , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Humanos , Instabilidade de Microssatélites , Repetições de Microssatélites
3.
Eur J Pharmacol ; 843: 307-315, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30537490

RESUMO

The latest findings indicate the huge therapeutic potential of stem cells in regenerative medicine, including the healing of chronic wounds. Main stem cell types involved in wound healing process are: epidermal and dermal stem cells, mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and hematopoietic stem cells (HSCs). In the therapy of chronic wounds, they can be administrated either topically or using different matrix like hydrogels, scaffolds, dermal substitutes and extracellular matrix (ECM) derivatives. Stem cells are proven to positively influence wound healing by different direct and indirect mechanisms including residing cells stimulation, biomolecules release, inflammation control and ECM remodelling. MSCs are especially worth mentioning as they can be easily derived from bone-marrow or adipose tissue. Apart from traditional approach of administering living stem cells to wounds, new trends have emerged in recent years. Good healing results are obtained using stem cell secretome alone, for example exosomes or conditioned media. There are also attempts to improve healing potential of stem cells by their co-culture with other cell types as well as by their genetic modifications or pretreatment using different chemicals or cell media. Moreover, stem cells have been tested for novel therapeutic purposes like for example acute burns and have been used in experiments on large animal models including pigs and sheep. In this review we discuss the role of stem cells in skin wound healing acceleration. In addition, we analyse possible new strategies of stem cells application in treatment of chronic wounds.


Assuntos
Transplante de Células-Tronco/tendências , Cicatrização , Animais , Humanos , Pele/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA