Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Sci Technol ; 51(22): 13407-13416, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29043797

RESUMO

In aquatic ecosystems, the cycling and toxicity of nickel (Ni) are coupled to other elemental cycles that can limit its bioavailability. Current sediment risk assessment approaches consider acid-volatile sulfide (AVS) as the major binding phase for Ni, but have not yet incorporated ligands that are present in oxic sediments. Our study aimed to assess how metal oxides play a role in Ni bioavailability in surficial sediments exposed to effluent from two mine sites. We coupled spatially explicit sediment geochemistry (i.e., separate oxic and suboxic) to the indigenous macroinvertebrate community structure. Effluent-exposed sites contained high concentrations of sediment Ni and AVS, though roughly 80% less AVS was observed in surface sediments. Iron (Fe) oxide mineral concentrations were elevated in surface sediments and bound a substantial proportion of Ni. Redundancy analysis of the invertebrate community showed surface sediment geochemistry significantly explained shifts in community abundances. Relative abundance of the dominant mayfly (Ephemeridae) was reduced in sites with greater bioavailable Ni, but accounting for Fe oxide-bound Ni greatly decreased variation in effect thresholds between the two mine sites. Our results provide field-based evidence that solid-phase ligands in oxic sediment, most notably Fe oxides, may have a critical role in controlling nickel bioavailability.


Assuntos
Sedimentos Geológicos , Níquel , Animais , Disponibilidade Biológica , Ephemeroptera , Óxidos , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA