Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143647

RESUMO

Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such endogenous viral elements and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of endogenous viral elements. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for 1 generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific endogenous viral elements identified an element comprised of a 9,045-bp stretch of repeated, inverted, and jumbled genome fragments of infectious hypodermal and hematopoietic necrosis virus bounded by a repeated 591/590 bp host sequence. As only near complete linear ∼4 kb infectious hypodermal and hematopoietic necrosis virus genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear endogenous viral element types. The existence of joined inverted infectious hypodermal and hematopoietic necrosis virus genome fragments also provides a means by which hairpin double-stranded RNA could be expressed and processed by the shrimp RNA interference machinery.


Assuntos
Densovirinae , Penaeidae , Animais , Austrália , Densovirinae/genética , Genoma Viral , Penaeidae/genética , Reação em Cadeia da Polimerase
2.
Foods ; 10(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34681337

RESUMO

Meat quality data can only be obtained after slaughter when selection decisions about the live animal are already too late. Carcass estimated breeding values present major precision problems due to low accuracy, and by the time an informed decision on the genetic merit for meat quality is made, the animal is already dead. We report for the first time, a targeted next-generation sequencing (NGS) of single nucleotide polymorphisms (SNP) of lipid metabolism genes in Tattykeel Australian White (TAW) sheep of the MARGRA lamb brand, utilizing an innovative and minimally invasive muscle biopsy sampling technique for directly quantifying the genetic worth of live lambs for health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), intramuscular fat (IMF), and fat melting point (FMP). NGS of stearoyl-CoA desaturase (SCD), fatty acid binding protein-4 (FABP4), and fatty acid synthase (FASN) genes identified functional SNP with unique DNA marker signatures for TAW genetics. The SCD g.23881050T>C locus was significantly associated with IMF, C22:6n-3, and C22:5n-3; FASN g.12323864A>G locus with FMP, C18:3n-3, C18:1n-9, C18:0, C16:0, MUFA, and FABP4 g.62829478A>T locus with IMF. These add new knowledge, precision, and reliability in directly making early and informed decisions on live sheep selection and breeding for health-beneficial n-3 LC-PUFA, FMP, IMF and superior meat-eating quality at the farmgate level. The findings provide evidence that significant associations exist between SNP of lipid metabolism genes and n-3 LC-PUFA, IMF, and FMP, thus underpinning potential marker-assisted selection for meat-eating quality traits in TAW lambs.

3.
J Proteomics ; 218: 103689, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32088355

RESUMO

Hemocyanin (Hc) is a multifunctional macromolecule involved in oxygen transport and non-specific immunity in shrimp. Hc is crucial in physiology and nutrition linked with optimal performance in aquaculture production systems. In medicine, Hc has been approved for clinical use in humans as adjuvant and anticancer therapeutic. In contrast, Hc has also been identified as one of the proteins causing anaphylaxis following shrimp consumption. The role of individual Hc isoforms remains unknown due to a lack of resolved Hc isoforms. We successfully identified eleven different Penaeus monodon hemocyanin (PmoHc) γ isoforms including two truncated isoforms (50 and 20 kDa) and one PmoHc ß isoform in haemolymph using proteomics informed by transcriptomics. Amino acid sequence homology ranged from 24 to 97% between putative PmoHc gene isoforms. Hc isoforms showed specific patterns of transcript expression in shrimp larval stages and adult hepatopancreas. These findings enable isoform level investigations aiming to define molecular mechanisms underpinning Hc functionality in shrimp physiology and immunity, as well as their individual immunogenic role in human allergy. Our research demonstrates the power of proteomics informed by transcriptomics to resolve isoform complexity in non-model organisms and lay the foundations for improved performance within the aquaculture industry and advance allergenic applications in medicine. SIGNIFICANCE: The roles of hemocyanin (Hc) in shrimp homeostasis and immunity as well as in human allergy are not well understood because the complexity of Hc isoforms has remained unresolved. Our results have confirmed the existence of at least 12 individual Hc isoforms in shrimp haemolymph and validated putative Hc gene assemblies from transcriptomics. Our findings will enable monitoring the expression of specific Hc isoforms in shrimp haemolymph during different environmental, nutritional and pathogenic conditions, thus providing insights into isoform specific functional roles. In medicine, the potential allergenicity of each Hc isoform could be determined and advance allergenic applications. Lastly, since Hc comprises up to 95% of the total protein in haemolymph, these isoforms become ideal targets for prawn provenance, traceability and food contamination studies.


Assuntos
Penaeidae , Animais , Aquicultura , Inocuidade dos Alimentos , Hemocianinas , Humanos , Penaeidae/genética , Isoformas de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA