Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1165, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326311

RESUMO

The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Proteômica , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias Renais/genética , Cromatina/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cromossomos Humanos X/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína com Valosina/genética
2.
Clin Cancer Res ; 30(5): 1022-1037, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812652

RESUMO

PURPOSE: Ewing sarcoma is the second most common bone sarcoma in children, with 1 case per 1.5 million in the United States. Although the survival rate of patients diagnosed with localized disease is approximately 70%, this decreases to approximately 30% for patients with metastatic disease and only approximately 10% for treatment-refractory disease, which have not changed for decades. Therefore, new therapeutic strategies are urgently needed for metastatic and refractory Ewing sarcoma. EXPERIMENTAL DESIGN: This study analyzed 19 unique Ewing sarcoma patient- or cell line-derived xenografts (from 14 primary and 5 metastatic specimens) using proteomics to identify surface proteins for potential immunotherapeutic targeting. Plasma membranes were enriched using density gradient ultracentrifugation and compared with a reference standard of 12 immortalized non-Ewing sarcoma cell lines prepared in a similar manner. In parallel, global proteome analysis was carried out on each model to complement the surfaceome data. All models were analyzed by Tandem Mass Tags-based mass spectrometry to quantify identified proteins. RESULTS: The surfaceome and global proteome analyses identified 1,131 and 1,030 annotated surface proteins, respectively. Among surface proteins identified, both approaches identified known Ewing sarcoma-associated proteins, including IL1RAP, CD99, STEAP1, and ADGRG2, and many new cell surface targets, including ENPP1 and CDH11. Robust staining of ENPP1 was demonstrated in Ewing sarcoma tumors compared with other childhood sarcomas and normal tissues. CONCLUSIONS: Our comprehensive proteomic characterization of the Ewing sarcoma surfaceome provides a rich resource of surface-expressed proteins in Ewing sarcoma. This dataset provides the preclinical justification for exploration of targets such as ENPP1 for potential immunotherapeutic application in Ewing sarcoma. See related commentary by Bailey, p. 934.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Sarcoma , Criança , Humanos , Sarcoma de Ewing/genética , Sarcoma de Ewing/terapia , Proteínas de Membrana , Proteoma , Proteômica , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Imunoterapia , Antígenos de Neoplasias , Oxirredutases
3.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873234

RESUMO

The t(X,17) chromosomal translocation, generating the ASPSCR1-TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCC), frustrating efforts to identify therapeutic targets for these rare cancers. Proteomic analysis showed that VCP/p97, an AAA+ ATPase with known segregase function, was strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1-TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1-TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributed with ASPSCR1-TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrated the oncogenic transcriptional signature of ASPSCR1-TFE3, by facilitating assembly of higher-order chromatin conformation structures as demonstrated by HiChIP. Finally, ASPSCR1-TFE3 and VCP demonstrated co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.

4.
Sci Adv ; 9(34): eadg6693, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611092

RESUMO

MYCN amplification (MNA) is a defining feature of high-risk neuroblastoma (NB) and predicts poor prognosis. However, whether genes within or in close proximity to the MYCN amplicon also contribute to MNA+ NB remains poorly understood. Here, we identify that GREB1, a transcription factor encoding gene neighboring the MYCN locus, is frequently coexpressed with MYCN and promotes cell survival in MNA+ NB. GREB1 controls gene expression independently of MYCN, among which we uncover myosin 1B (MYO1B) as being highly expressed in MNA+ NB and, using a chick chorioallantoic membrane (CAM) model, as a crucial regulator of invasion and metastasis. Global secretome and proteome profiling further delineates MYO1B in regulating secretome reprogramming in MNA+ NB cells, and the cytokine MIF as an important pro-invasive and pro-metastatic mediator of MYO1B activity. Together, we have identified a putative GREB1-MYO1B-MIF axis as an unconventional mechanism promoting aggressive behavior in MNA+ NB and independently of MYCN.


Assuntos
Neuroblastoma , Secretoma , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Agressão , Sobrevivência Celular
5.
Cancers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37345142

RESUMO

CIC encodes a transcriptional repressor and MAPK signalling effector that is inactivated by loss-of-function mutations in several cancer types, consistent with a role as a tumour suppressor. Here, we used bioinformatic, genomic, and proteomic approaches to investigate CIC's interaction networks. We observed both previously identified and novel candidate interactions between CIC and SWI/SNF complex members, as well as novel interactions between CIC and cell cycle regulators and RNA processing factors. We found that CIC loss is associated with an increased frequency of mitotic defects in human cell lines and an in vivo mouse model and with dysregulated expression of mitotic regulators. We also observed aberrant splicing in CIC-deficient cell lines, predominantly at 3' and 5' untranslated regions of genes, including genes involved in MAPK signalling, DNA repair, and cell cycle regulation. Our study thus characterises the complexity of CIC's functional network and describes the effect of its loss on cell cycle regulation, mitotic integrity, and transcriptional splicing, thereby expanding our understanding of CIC's potential roles in cancer. In addition, our work exemplifies how multi-omic, network-based analyses can be used to uncover novel insights into the interconnected functions of pleiotropic genes/proteins across cellular contexts.

6.
STAR Protoc ; 4(1): 102012, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36856765

RESUMO

Identification of effector targets is imperative to the characterization of the mechanisms of action of novel small molecules. Here, we describe steps to identify effector drug-protein interactions in lysates derived from cancer cell lines using a thermal proteome profiling (TPP) protocol. Building on existing TTP approaches, we detail the use of an in-solution trypsin digestion technique to streamline sample preparation, a nonparametric analysis to rank proteins for prioritization, and a follow-up strategy for identifying effector interactors. For complete details on the use and execution of this protocol, please refer to Johnson et al. (2022).1.


Assuntos
Neoplasias , Proteoma , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Linhagem Celular , Neoplasias/tratamento farmacológico
7.
Nat Commun ; 13(1): 896, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173148

RESUMO

Despite advances in genomic classification of breast cancer, current clinical tests and treatment decisions are commonly based on protein level information. Formalin-fixed paraffin-embedded (FFPE) tissue specimens with extended clinical outcomes are widely available. Here, we perform comprehensive proteomic profiling of 300 FFPE breast cancer surgical specimens, 75 of each PAM50 subtype, from patients diagnosed in 2008-2013 (n = 178) and 1986-1992 (n = 122) with linked clinical outcomes. These two cohorts are analyzed separately, and we quantify 4214 proteins across all 300 samples. Within the aggressive PAM50-classified basal-like cases, proteomic profiling reveals two groups with one having characteristic immune hot expression features and highly favorable survival. Her2-Enriched cases separate into heterogeneous groups differing by extracellular matrix, lipid metabolism, and immune-response features. Within 88 triple-negative breast cancers, four proteomic clusters display features of basal-immune hot, basal-immune cold, mesenchymal, and luminal with disparate survival outcomes. Our proteomic analysis characterizes the heterogeneity of breast cancer in a clinically-applicable manner, identifies potential biomarkers and therapeutic targets, and provides a resource for clinical breast cancer classification.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteoma/metabolismo , Neoplasias de Mama Triplo Negativas/classificação , Neoplasias de Mama Triplo Negativas/patologia , Mama/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteômica , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/mortalidade
8.
Cancer Discov ; 11(11): 2884-2903, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34021002

RESUMO

Cancer cells must overcome anoikis (detachment-induced death) to successfully metastasize. Using proteomic screens, we found that distinct oncoproteins upregulate IL1 receptor accessory protein (IL1RAP) to suppress anoikis. IL1RAP is directly induced by oncogenic fusions of Ewing sarcoma, a highly metastatic childhood sarcoma. IL1RAP inactivation triggers anoikis and impedes metastatic dissemination of Ewing sarcoma cells. Mechanistically, IL1RAP binds the cell-surface system Xc - transporter to enhance exogenous cystine uptake, thereby replenishing cysteine and the glutathione antioxidant. Under cystine depletion, IL1RAP induces cystathionine gamma lyase (CTH) to activate the transsulfuration pathway for de novo cysteine synthesis. Therefore, IL1RAP maintains cyst(e)ine and glutathione pools, which are vital for redox homeostasis and anoikis resistance. IL1RAP is minimally expressed in pediatric and adult normal tissues, and human anti-IL1RAP antibodies induce potent antibody-dependent cellular cytotoxicity of Ewing sarcoma cells. Therefore, we define IL1RAP as a new cell-surface target in Ewing sarcoma, which is potentially exploitable for immunotherapy. SIGNIFICANCE: Here, we identify cell-surface protein IL1RAP as a key driver of metastasis in Ewing sarcoma, a highly aggressive childhood sarcoma. Minimal expression in pediatric and adult normal tissues nominates IL1RAP as a promising target for immunotherapy.See related commentary by Yoon and DeNicola, p. 2679.This article is highlighted in the In This Issue feature, p. 2659.


Assuntos
Anoikis , Proteína Acessória do Receptor de Interleucina-1 , Sarcoma de Ewing , Adulto , Linhagem Celular Tumoral , Criança , Humanos , Proteômica , Receptores de Interleucina-1 , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia
9.
Oncogene ; 40(11): 1988-2001, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33603169

RESUMO

Uncovering the mechanisms that underpin how tumor cells adapt to microenvironmental stress is essential to better understand cancer progression. The HACE1 (HECT domain and ankyrin repeat-containing E3 ubiquitin-protein ligase) gene is a tumor suppressor that inhibits the growth, invasive capacity, and metastasis of cancer cells. However, the direct regulatory pathways whereby HACE1 confers this tumor-suppressive effect remain to be fully elucidated. In this report, we establish a link between HACE1 and the major stress factor, hypoxia-inducible factor 1 alpha (HIF1α). We find that HACE1 blocks the accumulation of HIF1α during cellular hypoxia through decreased protein stability. This property is dependent on HACE1 E3 ligase activity and loss of Ras-related C3 botulinum toxin substrate 1 (RAC1), an established target of HACE1 mediated ubiquitinylation and degradation. In vivo, genetic deletion of Rac1 reversed the increased HIF1α expression observed in Hace1-/- mice in murine KRasG12D-driven lung tumors. An inverse relationship was observed between HACE1 and HIF1α levels in tumors compared to patient-matched normal kidney tissues, highlighting the potential pathophysiological significance of our findings. Together, our data uncover a previously unrecognized function for the HACE1 tumor suppressor in blocking HIF1α accumulation under hypoxia in a RAC1-dependent manner.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Proteínas rac1 de Ligação ao GTP/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Metástase Neoplásica , Estabilidade Proteica , Transdução de Sinais/genética , Hipóxia Tumoral/genética , Ubiquitinação/genética
10.
Hum Pathol ; 101: 40-52, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32360491

RESUMO

The current World Health Organization classification does not distinguish transitional cell carcinoma of the ovary (TCC) from conventional tubo-ovarian high-grade serous carcinoma (HGSC), despite evidence suggesting improved prognosis for patients with TCC; instead, it is considered a morphologic variant of HGSC. The immunohistochemical (IHC) markers applied to date do not distinguish between TCC and HGSC. Therefore, we sought to compare the proteomic profiles of TCC and conventional HGSC to identify proteins enriched in TCC. Prognostic biomarkers in HGSC have proven to be elusive, and our aim was to identify biomarkers of TCC as a way of reliably and reproducibly identifying patients with a favorable prognosis and better response to chemotherapy compared with those with conventional HGSC. Quantitative global proteome analysis was performed on archival material of 12 cases of TCC and 16 cases of HGSC using SP3 (single-pot, solid phase-enhanced, sample preparation)-Clinical Tissue Proteomics, a recently described protocol for full-proteome analysis from formalin-fixed paraffin-embedded tissues. We identified 430 proteins that were significantly enriched in TCC over HGSC. Unsupervised co-clustering perfectly distinguished TCC from HGSC based on protein expression. Pathway analysis showed that proteins associated with cell death, necrosis, and apoptosis were highly expressed in TCCs, whereas proteins associated with DNA homologous recombination, cell mitosis, proliferation and survival, and cell cycle progression pathways had reduced expression. From the proteomic analysis, three potential biomarkers for TCC were identified, claudin-4 (CLDN4), ubiquitin carboxyl-terminal esterase L1 (UCHL1), and minichromosome maintenance protein 7 (MCM7), and tested by IHC analysis on tissue microarrays. In agreement with the proteomic analysis, IHC expression of those proteins was stronger in TCC than in HGSC (p < 0.0001). Using global proteomic analysis, we are able to distinguish TCC from conventional HGSC. Follow-up studies will be necessary to confirm that these molecular and morphologic differences are clinically significant.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células de Transição/diagnóstico , Cistadenocarcinoma Seroso/diagnóstico , Neoplasias das Tubas Uterinas/diagnóstico , Neoplasias Ovarianas/diagnóstico , Feminino , Humanos , Proteômica/métodos
11.
EMBO Rep ; 20(12): e48375, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31668005

RESUMO

Outcomes for metastatic Ewing sarcoma and osteosarcoma are dismal and have not changed for decades. Oxidative stress attenuates melanoma metastasis, and melanoma cells must reduce oxidative stress to metastasize. We explored this in sarcomas by screening for oxidative stress sensitizers, which identified the class I HDAC inhibitor MS-275 as enhancing vulnerability to reactive oxygen species (ROS) in sarcoma cells. Mechanistically, MS-275 inhibits YB-1 deacetylation, decreasing its binding to 5'-UTRs of NFE2L2 encoding the antioxidant factor NRF2, thereby reducing NFE2L2 translation and synthesis of NRF2 to increase cellular ROS. By global acetylomics, MS-275 promotes rapid acetylation of the YB-1 RNA-binding protein at lysine-81, blocking binding and translational activation of NFE2L2, as well as known YB-1 mRNA targets, HIF1A, and the stress granule nucleator, G3BP1. MS-275 dramatically reduces sarcoma metastasis in vivo, but an MS-275-resistant YB-1K81-to-alanine mutant restores metastatic capacity and NRF2, HIF1α, and G3BP1 synthesis in MS-275-treated mice. These studies describe a novel function for MS-275 through enhanced YB-1 acetylation, thus inhibiting YB-1 translational control of key cytoprotective factors and its pro-metastatic activity.


Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Piridinas/uso terapêutico , Sarcoma de Ewing/tratamento farmacológico , Fatores de Transcrição/metabolismo , Acetilação , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Metástase Neoplásica , Estresse Oxidativo , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia
12.
Neoplasia ; 21(8): 740-751, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31220736

RESUMO

Myxoid liposarcoma is a malignant lipogenic tumor that develops in deep soft tissues. While local control rates are good, current chemotherapy options remain ineffective against metastatic disease. Myxoid liposarcoma is characterized by the FUS-DDIT3 fusion oncoprotein that is proposed to function as an aberrant transcription factor, but its exact mechanism of action has remained unclear. To identify the key functional interacting partners of FUS-DDIT3, this study utilized immunoprecipitation-mass spectrometry (IP-MS) to identify the FUS-DDIT3 interactome in whole cell lysates of myxoid liposarcoma cells, and results showed an enrichment of RNA processing proteins. Further quantitative MS analyses of FUS-DDIT3 complexes isolated from nuclear lysates showed that members of several chromatin regulatory complexes were present in the FUS-DDIT3 interactome, including NuRD, SWI/SNF, PRC1, PRC2, and MLL1 COMPASS-like complexes. Co-immunoprecipitation validated the associations of FUS-DDIT3 with BRG1/SMARCA4, BAF155/SMARCC1, BAF57/SMARCE1, and KDM1A. Data from this study provides candidates for functional validation as potential therapeutic targets, particularly for emerging epigenetic drugs.


Assuntos
Proteínas de Transporte/metabolismo , Lipossarcoma Mixoide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Transporte/química , Linhagem Celular Tumoral , Humanos , Lipossarcoma Mixoide/genética , Proteínas de Fusão Oncogênica/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteoma , Proteômica/métodos , Reprodutibilidade dos Testes
13.
Methods Mol Biol ; 1959: 65-87, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30852816

RESUMO

The broad utility of mass spectrometry (MS) for investigating the proteomes of a diverse array of sample types has significantly expanded the use of this technology in biological studies. This widespread use has resulted in a substantial collection of protocols and acquisition approaches designed to obtain the highest-quality data for each experiment. As a result, distilling this information to develop a standard operating protocol for essential workflows, such as bottom-up quantitative shotgun whole proteome analysis, can be complex for users new to MS technology. Further complicating this matter, in-depth description of the methodological choices is seldom given in the literature. In this work, we describe a workflow for quantitative whole proteome analysis that is suitable for biomarker discovery, giving detailed consideration to important stages, including (1) cell lysis and protein cleanup using SP3 paramagnetic beads, (2) quantitative labeling, (3) offline peptide fractionation, (4) MS analysis, and (5) data analysis and interpretation. Special attention is paid to providing comprehensive details for all stages of this proteomics workflow to enhance transferability to external labs. The standardized protocol described here will provide a simplified resource to the proteomics community toward efficient adaptation of MS technology in proteomics studies.


Assuntos
Nanopartículas de Magnetita , Espectrometria de Massas , Proteômica , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Interpretação Estatística de Dados , Humanos , Espectrometria de Massas/métodos , Peptídeos , Proteoma , Proteômica/métodos , Proteômica/normas , Fluxo de Trabalho
14.
J Proteome Res ; 17(4): 1730-1740, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29565595

RESUMO

The diversity in protein and peptide biochemistry necessitates robust protocols and reagents for efficiently handling and enriching these molecules prior to analysis with mass spectrometry (MS) or other techniques. Further exploration of the paramagnetic bead-based approach, single-pot solid-phase-enhanced sample preparation (SP3), is carried out toward updating and extending previously described conditions and experimental workflows. The SP3 approach was tested in a wide range of experimental scenarios, including (1) binding solvents (acetonitrile, ethanol, isopropanol, acetone), (2) binding pH (acidic vs neutral), (3) solvent/lysate ratios (50-200%, v/v), (4) mixing and rinsing conditions (on-rack vs off-rack rinsing), (5) Enrichment of nondenatured proteins, and (6) capture of individual proteins from noncomplex mixtures. These results highlight the robust handling of proteins in a broad set of scenarios while also enabling the development of a modified SP3 workflow that offers extended compatibility. The modified SP3 approach is used in quantitative in-depth proteome analyses to compare it with commercial paramagnetic bead-based HILIC methods (MagReSyn) and across multiple binding conditions (e.g., pH and solvent during binding). Together, these data reveal the extensive quantitative coverage of the proteome possible with SP3 independent of the binding approach utilized. The results further establish the utility of SP3 for the unbiased handling of peptides and proteins for proteomic applications.


Assuntos
Proteômica/métodos , Manejo de Espécimes/métodos , Concentração de Íons de Hidrogênio , Magnetismo , Microesferas , Peptídeos/análise , Ligação Proteica , Proteínas/análise , Proteoma/análise , Projetos de Pesquisa , Solventes
15.
Artigo em Inglês | MEDLINE | ID: mdl-29438965

RESUMO

ERBB2 amplification has been identified in ∼5% of KRAS wild-type colorectal cancers (CRCs). A recent clinical trial showed response to HER2-directed therapy in a subset of ERBB2-amplified metastatic CRCs resistant to chemotherapy and EGFR-directed therapy. With the aim of better understanding mechanisms of resistance to HER2-directed and EGFR-directed therapies, we report the complete molecular characterization of two cases of ERBB2-amplified CRC. PCR-free whole-genome sequencing was used to identify mutations, copy-number alterations, structural variations, and losses of heterozygosity. ERBB2 copy number was also measured by fluorescence in situ hybridization. Single-stranded mRNA sequencing was used for gene expression profiling. Immunohistochemistry and protein mass spectrometry were used to quantify HER2 protein expression. The cases showed ERBB2 copy number of 86 and 92, respectively. Both cases were immunohistochemically positive for HER2 according to CRC-specific scoring criteria. Fluorescence in situ hybridization and protein mass spectrometry corroborated significantly elevated ERBB2 copy number and abundance of HER2 protein. Both cases were microsatellite stable and without mutation of RAS pathway genes. Additional findings included altered expression of PTEN, MET, and MUC1 and mutation of PIK3CA The potential effects of the molecular alterations on sensitivity to EGFR and HER2-directed therapies were discussed. Identification of ERBB2 amplification in CRC is necessary to select patients who may respond to HER2-directed therapy. An improved understanding of the molecular characteristics of ERBB2-amplified CRCs and their potential mechanisms of resistance will be useful for future research into targeted therapies and may eventually inform therapeutic decision-making.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes , Receptor ErbB-2/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/genética , Biópsia , Ciclo Celular/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Feminino , Genômica/métodos , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Polimorfismo de Nucleotídeo Único , Receptor ErbB-2/metabolismo , Transdução de Sinais , Resultado do Tratamento , Sequenciamento Completo do Genoma
16.
Proteomics Clin Appl ; 12(2)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28887829

RESUMO

PURPOSE: Maximizing the clinical utility of information obtained in longitudinal precision medicine programs would benefit from robust comparative analyses to known information to assess biological features of patient material toward identifying the underlying features driving their disease phenotype. Herein, the potential for utilizing publically deposited mass-spectrometry-based proteomics data to perform inter-study comparisons of cell-line or tumor-tissue materials is investigated. EXPERIMENTAL DESIGN: To investigate the robustness of comparison between MS-based proteomics studies carried out with different methodologies, deposited data representative of label-free (MS1) and isobaric tagging (MS2 and MS3 quantification) are utilized. RESULTS: In-depth quantitative proteomics data acquired from analysis of ovarian cancer cell lines revealed the robust recapitulation of observable gene expression dynamics between individual studies carried out using significantly different methodologies. The observed signatures enable robust inter-study clustering of cell line samples. In addition, the ability to classify and cluster tumor samples based on observed gene expression trends when using a single patient sample is established. With this analysis, relevant gene expression dynamics are obtained from a single patient tumor, in the context of a precision medicine analysis, by leveraging a large cohort of repository data as a comparator. CONCLUSION AND CLINICAL RELEVANCE: Together, these data establish the potential for state-of-the-art MS-based proteomics data to serve as resources for robust comparative analyses in precision medicine applications.


Assuntos
Bases de Dados de Proteínas , Medicina de Precisão , Proteômica/métodos , Linhagem Celular , Humanos , Espectrometria de Massas , Neoplasias/metabolismo
17.
J Proteome Res ; 16(5): 1831-1838, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28418254

RESUMO

Multiplexed quantification with isobaric chemical tags (e.g., TMT, iTRAQ) provides a robust and efficient means to comparatively examine proteome dynamics between several biological states using a mass spectrometer (MS). The quantitative nature of isobaric tags necessitates strict validation of the observed ion signals in the chosen MS detector before differential patterns are extracted between biological states. We present an in-depth analysis of isobaric tag data acquired on current generation Orbitrap MS hardware to illustrate pitfalls in acquisition settings that can negatively impact results. We establish, for the first time, the presence of a notch, a region of no observed values, in the reporter ion distributions from isobaric-labeled peptide mixtures acquired on these instruments. We determine that this notch is present in published data across a wide range of instruments of the same or different type and is isolated to the Orbitrap mass analyzer. We demonstrate that the impact of the notch can be minimized using manipulations of Orbitrap scan parameters and on-column injection amounts. Lastly, using a mixture of synthetic standard peptides we investigated the impact on identification rates and quantification precision. Together, these data highlight an important phenomenon that negatively impacts peptide identification and quantification in the Orbitrap analyzer as well as outlining guidelines to follow to ensure minimization of MS-induced artifacts in isobaric tag experiments resulting from the notch.


Assuntos
Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Íons , Espectrometria de Massas/instrumentação , Peptídeos/análise , Peptídeos/normas , Proteoma/normas , Proteômica/normas , Coloração e Rotulagem
18.
Nucleic Acids Res ; 45(11): 6698-6716, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28334900

RESUMO

CDK12 (cyclin-dependent kinase 12) is a regulatory kinase with evolutionarily conserved roles in modulating transcription elongation. Recent tumor genome studies of breast and ovarian cancers highlighted recurrent CDK12 mutations, which have been shown to disrupt DNA repair in cell-based assays. In breast cancers, CDK12 is also frequently co-amplified with the HER2 (ERBB2) oncogene. The mechanisms underlying functions of CDK12 in general and in cancer remain poorly defined. Based on global analysis of mRNA transcripts in normal and breast cancer cell lines with and without CDK12 amplification, we demonstrate that CDK12 primarily regulates alternative last exon (ALE) splicing, a specialized subtype of alternative mRNA splicing, that is both gene- and cell type-specific. These are unusual properties for spliceosome regulatory factors, which typically regulate multiple forms of alternative splicing in a global manner. In breast cancer cells, regulation by CDK12 modulates ALE splicing of the DNA damage response activator ATM and a DNAJB6 isoform that influences cell invasion and tumorigenesis in xenografts. We found that there is a direct correlation between CDK12 levels, DNAJB6 isoform levels and the migration capacity and invasiveness of breast tumor cells. This suggests that CDK12 gene amplification can contribute to the pathogenesis of the cancer.


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Quinases Ciclina-Dependentes/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Reparo do DNA , Éxons , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Invasividade Neoplásica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Poliadenilação , Mapas de Interação de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Sci Rep ; 6: 34949, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713570

RESUMO

Although re-sequencing of gene panels and mRNA expression profiling are now firmly established in clinical laboratories, in-depth proteome analysis has remained a niche technology, better suited for studying model systems rather than challenging materials such as clinical trial samples. To address this limitation, we have developed a novel and optimized platform called SP3-Clinical Tissue Proteomics (SP3-CTP) for in-depth proteome profiling of practical quantities of tumour tissues, including formalin fixed and paraffin embedded (FFPE). Using single 10 µm scrolls of clinical tumour blocks, we performed in-depth quantitative analyses of individual sections from ovarian tumours covering the high-grade serous, clear cell, and endometrioid histotypes. This examination enabled the generation of a novel high-resolution proteome map of ovarian cancer histotypes from clinical tissues. Comparison of the obtained proteome data with large-scale genome and transcriptome analyses validated the observed proteome biology for previously validated hallmarks of this disease, and also identified novel protein features. A tissue microarray analysis validated cystathionine gamma-lyase (CTH) as a novel clear cell carcinoma feature with potential clinical relevance. In addition to providing a milestone in the understanding of ovarian cancer biology, these results show that in-depth proteomic analysis of clinically annotated FFPE materials can be effectively used as a biomarker discovery tool and perhaps ultimately as a diagnostic approach.


Assuntos
Neoplasias Ovarianas/metabolismo , Proteômica/métodos , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patologia , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/patologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Feminino , Formaldeído , Perfilação da Expressão Gênica/métodos , Humanos , Espectrometria de Massas/métodos , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Mapeamento de Peptídeos , Proteogenômica , Fixação de Tecidos , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA