Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(2): 1500-1512, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38227216

RESUMO

Casitas B-lymphoma proto-oncogene-b (Cbl-b), a member of the Cbl family of RING finger E3 ubiquitin ligases, has been demonstrated to play a central role in regulating effector T-cell function. Multiple studies using gene-targeting approaches have provided direct evidence that Cbl-b negatively regulates T, B, and NK cell activation via a ubiquitin-mediated protein modulation. Thus, inhibition of Cbl-b ligase activity can lead to immune activation and has therapeutic potential in immuno-oncology. Herein, we describe the discovery and optimization of an arylpyridone series as Cbl-b inhibitors by structure-based drug discovery to afford compound 31. This compound binds to Cbl-b with an IC50 value of 30 nM and induces IL-2 production in T-cells with an EC50 value of 230 nM. Compound 31 also shows robust intracellular target engagement demonstrated through inhibition of Cbl-b autoubiquitination, inhibition of ubiquitin transfer to ZAP70, and the cellular modulation of phosphorylation of a downstream signal within the TCR axis.


Assuntos
Proteínas Proto-Oncogênicas c-cbl , Ubiquitina-Proteína Ligases , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linfócitos T/metabolismo , Fosforilação , Ubiquitina/metabolismo
2.
J Med Chem ; 66(4): 2918-2945, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36727211

RESUMO

Herein, we report the optimization of a meta-substituted series of selective estrogen receptor degrader (SERD) antagonists for the treatment of ER+ breast cancer. Structure-based design together with the use of modeling and NMR to favor the bioactive conformation led to a highly potent series of basic SERDs with promising physicochemical properties. Issues with hERG activity resulted in a strategy of zwitterion formation and ultimately in the identification of 38. This compound was shown to be a highly potent SERD capable of effectively degrading ERα in both MCF-7 and CAMA-1 cell lines. The low lipophilicity and zwitterionic nature led to a SERD with a clean secondary pharmacology profile and no hERG activity. Favorable physicochemical properties resulted in good oral bioavailability in preclinical species and potent in vivo activity in a mouse xenograft model.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Camundongos , Humanos , Animais , Feminino , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Antagonistas de Estrogênios/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Linhagem Celular
3.
J Med Chem ; 65(4): 3306-3331, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35133824

RESUMO

ATAD2 is an epigenetic bromodomain-containing target which is overexpressed in many cancers and has been suggested as a potential oncology target. While several small molecule inhibitors have been described in the literature, their cellular activity has proved to be underwhelming. In this work, we describe the identification of a novel series of ATAD2 inhibitors by high throughput screening, confirmation of the bromodomain region as the site of action, and the optimization campaign undertaken to improve the potency, selectivity, and permeability of the initial hit. The result is compound 5 (AZ13824374), a highly potent and selective ATAD2 inhibitor which shows cellular target engagement and antiproliferative activity in a range of breast cancer models.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Ligação a DNA/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Especificidade por Substrato , Ensaio Tumoral de Célula-Tronco
4.
Elife ; 102021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319231

RESUMO

Mutations within the kinase domain of the epidermal growth factor receptor (EGFR) are common oncogenic driver events in non-small cell lung cancer. Although the activation of EGFR in normal cells is primarily driven by growth-factor-binding-induced dimerization, mutations on different exons of the kinase domain of the receptor have been found to affect the equilibrium between its active and inactive conformations giving rise to growth-factor-independent kinase activation. Using molecular dynamics simulations combined with enhanced sampling techniques, we compare here the conformational landscape of the monomers and homodimers of the wild-type and mutated forms of EGFR ΔELREA and L858R, as well as of two exon 20 insertions, D770-N771insNPG, and A763-Y764insFQEA. The differences in the conformational energy landscapes are consistent with multiple mechanisms of action including the regulation of the hinge motion, the stabilization of the dimeric interface, and local unfolding transitions. Overall, a combination of different effects is caused by the mutations and leads to the observed aberrant signaling.


Assuntos
Mutação , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Pulmonares/genética , Simulação de Dinâmica Molecular , Ligação Proteica
5.
J Chem Inf Model ; 58(9): 1870-1888, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30125501

RESUMO

The bromodomain-containing proteins are a ligandable family of epigenetic readers, which play important roles in oncological, cardiovascular, and inflammatory diseases. Achieving selective inhibition of specific bromodomains is challenging, due to the limited understanding of compound and target selectivity features. In this study we build and benchmark proteochemometric (PCM) classification models on bioactivity data for 15,350 data points across 31 bromodomains, using both compound fingerprints and binding site protein descriptors as input variables, achieving a maximum performance as measured by the Matthew's Correlation Coefficient (MCC) of 0.83 on the external test set. We also find that histone peptide binding data can be used as a target descriptor to build a high performing PCM model (MCC 0.80), showing the transferability of peptide interaction information to modeling small-molecule bioactivity. 1,139 compounds were selected for prospective experimental testing by performing a virtual screen using model predictions and implementing conformal prediction, which resulted in 319 correctly predicted compound-target pair actives and the correct prediction for certain selectivity profile combinations of the four bromodomains tested against. We identify that conformal prediction can be used to fine-tune the balance between hit retrieval and hit structural diversity in a virtual screening setting. PCM can be applied to future virtual screening and compound design, including off-target prediction for bromodomains.


Assuntos
Modelos Químicos , Proteínas Nucleares/metabolismo , Sítios de Ligação , Simulação por Computador , Descoberta de Drogas , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Ligação Proteica , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes
6.
Chem Biol Drug Des ; 82(5): 500-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23745990
7.
J Med Chem ; 54(22): 7797-814, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21888439

RESUMO

This paper describes the identification and optimization of a novel series of DFG-out binding p38 inhibitors as inhaled agents for the treatment of chronic obstructive pulmonary disease. Structure based drug design and "inhalation by design" principles have been applied to the optimization of the lead series exemplied by compound 1a. Analogues have been designed to be potent and selective for p38, with an emphasis on slow enzyme dissociation kinetics to deliver prolonged lung p38 inhibition. Pharmacokinetic properties were tuned with high intrinsic clearance and low oral bioavailability in mind, to minimize systemic exposure and reduce systemically driven adverse events. High CYP mediated clearance and glucuronidation were targeted to achieve high intrinsic clearance coupled with multiple routes of clearance to minimize drug-drug interactions. Furthermore, pharmaceutical properties such as stability, crystallinity, and solubility were considered to ensure compatibility with a dry powder inhaler. 1ab (PF-03715455) was subsequently identified as a clinical candidate from this series with efficacy and safety profiles confirming its potential as an inhaled agent for the treatment of COPD.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Compostos Azabicíclicos/síntese química , Compostos de Metilureia/síntese química , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pirazóis/síntese química , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Administração por Inalação , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Compostos Azabicíclicos/farmacocinética , Compostos Azabicíclicos/farmacologia , Sítios de Ligação , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Cães , Estabilidade de Medicamentos , Humanos , Técnicas In Vitro , Cinética , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Compostos de Metilureia/farmacocinética , Compostos de Metilureia/farmacologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Pirazóis/farmacocinética , Pirazóis/farmacologia , Ratos , Solubilidade , Ressonância de Plasmônio de Superfície , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/química
8.
Proteins ; 62(3): 649-62, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16317719

RESUMO

We report molecular dynamics simulations of the Escherichia coli Lysyl-tRNA synthetase LysU isoform carried out as a benchmark for mutant simulations in in silico protein engineering efforts. Unlike previous studies of aminoacyl-tRNA synthetases, LysU is modelled in its full dimeric form with explicit solvent. While developing a suitable simulation protocol, we observed an asymmetry that persists despite improvements to the model. This prediction has directly led to experiments that establish a functional asymmetry in nucleotide binding by LysU. The development of a simulation protocol and validation of the model are presented here. The observed asymmetry is described and the role of protein flexibility in developing the asymmetry is discussed.


Assuntos
Proteínas de Escherichia coli/química , Lisina-tRNA Ligase/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Dimerização , Ligação de Hidrogênio , Cinética , Lisina/metabolismo , Lisina-tRNA Ligase/metabolismo , Modelos Moleculares , Modelos Teóricos , Ligação Proteica , Estrutura Secundária de Proteína
9.
BMC Struct Biol ; 3: 5, 2003 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-12787471

RESUMO

BACKGROUND: Charging of transfer-RNA with cognate amino acid is accomplished by the aminoacyl-tRNA synthetases, and proceeds through an aminoacyl adenylate intermediate. The lysyl-tRNA synthetase has evolved an active site that specifically binds lysine and ATP. Previous molecular dynamics simulations of the heat-inducible Escherichia coli lysyl-tRNA synthetase, LysU, have revealed differences in the binding of ATP and aspects of asymmetry between the nominally equivalent active sites of this dimeric enzyme. The possibility that this asymmetry results in different binding affinities for the ligands is addressed here by a parallel computational and biochemical study. RESULTS: Biochemical experiments employing isothermal calorimetry, steady-state fluorescence and circular dichroism are used to determine the order and stoichiometries of the lysine and nucleotide binding events, and the associated thermodynamic parameters. An ordered mechanism of substrate addition is found, with lysine having to bind prior to the nucleotide in a magnesium dependent process. Two lysines are found to bind per dimer, and trigger a large conformational change. Subsequent nucleotide binding causes little structural rearrangement and crucially only occurs at a single catalytic site, in accord with the simulations. Molecular dynamics based free energy calculations of the ATP binding process are used to determine the binding affinities of each site. Significant differences in ATP binding affinities are observed, with only one active site capable of realizing the experimental binding free energy. Half-of-the-sites models in which the nucleotide is only present at one active site achieve their full binding potential irrespective of the subunit choice. This strongly suggests the involvement of an anti-cooperative mechanism. Pathways for relaying information between the two active sites are proposed. CONCLUSIONS: The asymmetry uncovered here appears to be a common feature of oligomeric aminoacyl-tRNA synthetases, and may play an important functional role. We suggest a manner in which catalytic efficiency could be improved by LysU operating in an alternating sites mechanism.


Assuntos
Simulação por Computador , Lisina-tRNA Ligase/química , Modelos Químicos , Termodinâmica , Trifosfato de Adenosina/química , Sítios de Ligação/fisiologia , Calorimetria , Catálise , Dicroísmo Circular , Dimerização , Escherichia coli/enzimologia , Ligantes , Lisina/química , Ligação Proteica/fisiologia , Conformação Proteica , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA