Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902113

RESUMO

Aging and metabolic syndrome are associated with neurodegenerative pathologies including Alzheimer's disease (AD) and there is growing interest in the prophylactic potential of probiotic bacteria in this area. In this study, we assessed the neuroprotective potential of the Lab4P probiotic consortium in both age and metabolically challenged 3xTg-AD mice and in human SH-SY5Y cell culture models of neurodegeneration. In mice, supplementation prevented disease-associated deteriorations in novel object recognition, hippocampal neurone spine density (particularly thin spines) and mRNA expression in hippocampal tissue implying an anti-inflammatory impact of the probiotic, more notably in the metabolically challenged setting. In differentiated human SH-SY5Y neurones challenged with ß-Amyloid, probiotic metabolites elicited a neuroprotective capability. Taken together, the results highlight Lab4P as a potential neuroprotective agent and provide compelling support for additional studies in animal models of other neurodegenerative conditions and human studies.


Assuntos
Doença de Alzheimer , Neuroblastoma , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Camundongos Transgênicos , Neuroblastoma/patologia , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Cognição , Modelos Animais de Doenças
2.
Mol Cell ; 82(17): 3135-3150.e9, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914531

RESUMO

Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.


Assuntos
Poli A , Poliadenilação , Regiões 3' não Traduzidas , Humanos , Poli A/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Zinco/metabolismo
3.
Front Nutr ; 8: 778289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901123

RESUMO

The anti-inflammatory and cholesterol lowering capabilities of probiotic bacteria highlight them as potential prophylactics against chronic inflammatory diseases, particularly cardiovascular disease. Previous studies in silico, in vitro, and in vivo suggest that the Lab4 probiotic consortium may harbour such capabilities and in the current study, we assessed plasma levels of cytokines/chemokines, short chain fatty acids and lipids and faecal levels of bile acids in a subpopulation of healthy Wistar rats included in 90-day repeat dose oral toxicity study. In the rats receiving Lab4, circulating levels of pro-inflammatory interleukin-6, tumour necrosis factor-α and keratinocyte chemoattractant/growth regulated oncogene were significantly lower compared to the control group demonstrating a systemic anti-inflammatory effect. These changes occurred alongside significant reductions in plasma low density lipoprotein cholesterol and increases in faecal bile acid excretion implying the ability to lower circulating cholesterol via the deconjugation of intestinal bile acids. Correlative analysis identified significant associations between plasma tumour necrosis factor-α and the plasma total cholesterol:high density lipoprotein cholesterol ratio and faecal levels of bifidobacteria in the Lab4 rats. Together, these data highlight Lab4 supplementation as a holistic approach to CVD prevention and encourages further studies in humans.

4.
FASEB J ; 35(10): e21892, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569651

RESUMO

Atherosclerosis is a chronic inflammatory disorder of the vasculature regulated by cytokines. We have previously shown that extracellular signal-regulated kinase-1/2 (ERK1/2) plays an important role in serine 727 phosphorylation of signal transducer and activator of transcription-1 (STAT1) transactivation domain, which is required for maximal interferon-γ signaling, and the regulation of modified LDL uptake by macrophages in vitro. Unfortunately, the roles of ERK1/2 and STAT1 serine 727 phosphorylation in atherosclerosis are poorly understood and were investigated using ERK1 deficient mice (ERK2 knockout mice die in utero) and STAT1 knock-in mice (serine 727 replaced by alanine; STAT1 S727A). Mouse Atherosclerosis RT² Profiler PCR Array analysis showed that ERK1 deficiency and STAT1 S727A modification produced significant changes in the expression of 18 and 49 genes, respectively, in bone marrow-derived macrophages, with 17 common regulated genes that included those that play key roles in inflammation and cell migration. Indeed, ERK1 deficiency and STAT1 S727A modification attenuated chemokine-driven migration of macrophages with the former also impacting proliferation and the latter phagocytosis. In LDL receptor deficient mice fed a high fat diet, both ERK1 deficiency and STAT1 S727A modification produced significant reduction in plaque lipid content, albeit at different time points. The STAT1 S727A modification additionally caused a significant reduction in plaque content of macrophages and CD3 T cells and diet-induced cardiac hypertrophy index. In addition, there was a significant increase in plasma IL-2 levels and a trend toward increase in plasma IL-5 levels. These studies demonstrate important roles of STAT1 S727 phosphorylation in particular in the regulation of atherosclerosis-associated macrophage processes in vitro together with plaque lipid content and inflammation in vivo, and support further assessment of its therapeutical potential.


Assuntos
Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Receptores de LDL/deficiência , Fator de Transcrição STAT1/metabolismo , Animais , Técnicas de Introdução de Genes , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Fosforilação , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Receptores de LDL/metabolismo , Fator de Transcrição STAT1/genética
5.
Mol Nutr Food Res ; 65(17): e2100214, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216185

RESUMO

SCOPE: Previous studies show that Lab4 probiotic consortium plus Lactobacillus plantarum CUL66 (Lab4P) reduces diet-induced weight gain and plasma cholesterol levels in C57BL/6J mice fed a high fat diet (HFD). The effect of Lab4P on atherosclerosis is not known and is therefore investigated. METHODS AND RESULTS: Atherosclerosis-associated parameters are analyzed in LDL receptor deficient mice fed HFD for 12 weeks alone or supplemented with Lab4P. Lab4P increases plasma HDL and triglyceride levels and decreases LDL/VLDL levels. Lab4P also reduces plaque burden and content of lipids and macrophages, indicative of dampened inflammation, and increases smooth muscle cell content, a marker of plaque stabilization. Atherosclerosis arrays show that Lab4P alters the liver expression of 19 key disease-associated genes. Lab4P also decreases the frequency of macrophages and T-cells in the bone marrow. In vitro assays using conditioned media from probiotic bacteria demonstrates attenuation of several atherosclerosis-associated processes in vitro such as chemokine-driven monocytic migration, proliferation of monocytes and macrophages, foam cell formation and associated changes in expression of key genes, and proliferation and migration of vascular smooth muscle cells. CONCLUSION: This study provides new insights into the anti-atherogenic actions of Lab4P together with the underlying mechanisms and supports further assessments in human trials.


Assuntos
Aterosclerose/terapia , Fígado/fisiologia , Placa Aterosclerótica/terapia , Probióticos/farmacologia , Animais , Aterosclerose/genética , Aterosclerose/patologia , Células da Medula Óssea , Colesterol/sangue , Meios de Cultivo Condicionados/farmacologia , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Lactobacillus plantarum , Lipídeos/sangue , Masculino , Camundongos Mutantes , Tamanho do Órgão , Placa Aterosclerótica/patologia , Receptores de LDL/genética , Baço/crescimento & desenvolvimento
6.
Genome Biol ; 21(1): 195, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762776

RESUMO

BACKGROUND: RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in RBP expression and function are often observed in cancer and influence critical pathways implicated in tumor initiation and growth. Identification and characterization of oncogenic RBPs and their regulatory networks provide new opportunities for targeted therapy. RESULTS: We identify the RNA-binding protein SERBP1 as a novel regulator of glioblastoma (GBM) development. High SERBP1 expression is prevalent in GBMs and correlates with poor patient survival and poor response to chemo- and radiotherapy. SERBP1 knockdown causes delay in tumor growth and impacts cancer-relevant phenotypes in GBM and glioma stem cell lines. RNAcompete identifies a GC-rich region as SERBP1-binding motif; subsequent genomic and functional analyses establish SERBP1 regulation role in metabolic routes preferentially used by cancer cells. An important consequence of these functions is SERBP1 impact on methionine production. SERBP1 knockdown decreases methionine levels causing a subsequent reduction in histone methylation as shown for H3K27me3 and upregulation of genes associated with neurogenesis, neuronal differentiation, and function. Further analysis demonstrates that several of these genes are downregulated in GBM, potentially through epigenetic silencing as indicated by the presence of H3K27me3 sites. CONCLUSIONS: SERBP1 is the first example of an RNA-binding protein functioning as a central regulator of cancer metabolism and indirect modulator of epigenetic regulation in GBM. By bridging these two processes, SERBP1 enhances glioma stem cell phenotypes and contributes to GBM poorly differentiated state.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Epigênese Genética , Feminino , Glioblastoma/etiologia , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Masculino , Camundongos , Neurogênese , Fenótipo , Prognóstico , Estados Unidos/epidemiologia
7.
Cancer Res ; 79(3): 467-481, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30487138

RESUMO

Genome-wide association studies have identified 40 ovarian cancer risk loci. However, the mechanisms underlying these associations remain elusive. In this study, we conducted a two-pronged approach to identify candidate causal SNPs and assess underlying biological mechanisms at chromosome 9p22.2, the first and most statistically significant associated locus for ovarian cancer susceptibility. Three transcriptional regulatory elements with allele-specific effects and a scaffold/matrix attachment region were characterized and, through physical DNA interactions, BNC2 was established as the most likely target gene. We determined the consensus binding sequence for BNC2 in vitro, verified its enrichment in BNC2 ChIP-seq regions, and validated a set of its downstream target genes. Fine-mapping by dense regional genotyping in over 15,000 ovarian cancer cases and 30,000 controls identified SNPs in the scaffold/matrix attachment region as among the most likely causal variants. This study reveals a comprehensive regulatory landscape at 9p22.2 and proposes a likely mechanism of susceptibility to ovarian cancer. SIGNIFICANCE: Mapping the 9p22.2 ovarian cancer risk locus identifies BNC2 as an ovarian cancer risk gene.See related commentary by Choi and Brown, p. 439.


Assuntos
Carcinoma Epitelial do Ovário/genética , Cromossomos Humanos Par 9 , Neoplasias Ovarianas/genética , Sequência de Bases , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Mapeamento Cromossômico , Cistadenocarcinoma Seroso/genética , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
8.
Structure ; 26(1): 85-95.e3, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29276034

RESUMO

The CXXC domain, first identified as the reader of unmodified CpG dinucleotide, plays important roles in epigenetic regulation by targeting various activities to CpG islands. Here we systematically measured and compared the DNA-binding selectivities of all known human CXXC domains by different binding assays, and complemented the existing function-based classification of human CXXC domains with a classification based on their DNA selectivities. Through a series of crystal structures of CXXC domains with DNA ligands, we unravel the molecular mechanisms of how these CXXC domains, including single CXXC domains and tandem CXXC-PHD domains, recognize distinct DNA ligands, which further supports our classification of human CXXC domains and also provides insights into selective recruitment of chromatin modifiers to their respective targets via CXXC domains recognizing different genomic DNA sequences. Our study facilitates the understanding of the relationship between the DNA-binding specificities of the CXXC proteins and their biological functions.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Proteínas F-Box/química , Histona Desmetilases com o Domínio Jumonji/química , Oxigenases de Função Mista/química , Proteínas de Neoplasias/química , Proteínas Proto-Oncogênicas/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Ilhas de CpG , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transativadores
9.
J Biol Chem ; 293(9): 3218-3233, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217772

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable the immune system to recognize and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming, and some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato is further able to bind and distort double-stranded DNA. However, Rx1 host targets that support a role for Rx1 in transcriptional reprogramming at DNA are unknown. Here, we report a functional interaction between Rx1 and NbGlk1, a Golden2-like transcription factor. Rx1 binds to NbGlk1 in vitro and in planta. NbGlk1 binds to known Golden2-like consensus DNA sequences. Rx1 reduces the binding affinity of NbGlk1 for DNA in vitro. NbGlk1 activates cellular responses to potato virus X, whereas Rx1 associates with NbGlk1 and prevents its assembly on DNA in planta unless activated by PVX. This study provides new mechanistic insight into how an NLR can coordinate an immune signaling response at DNA following pathogen perceptions.


Assuntos
DNA/metabolismo , Espaço Intracelular/metabolismo , Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas NLR/química , Proteínas de Plantas/química , Ligação Proteica , Domínios Proteicos , Nicotiana
10.
Cancer Cell ; 32(1): 101-114.e8, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28697339

RESUMO

Global transcriptomic imbalance is a ubiquitous feature associated with cancer, including hepatocellular carcinoma (HCC). Analyses of 1,225 clinical HCC samples revealed that a large numbers of RNA binding proteins (RBPs) are dysregulated and that RBP dysregulation is associated with poor prognosis. We further identified that oncogenic activation of a top candidate RBP, negative elongation factor E (NELFE), via somatic copy-number alterations enhanced MYC signaling and promoted HCC progression. Interestingly, NELFE induces a unique tumor transcriptome by selectively regulating MYC-associated genes. Thus, our results revealed NELFE as an oncogenic protein that may contribute to transcriptome imbalance in HCC through the regulation of MYC signaling.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/fisiologia , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Mol Cell ; 65(3): 539-553.e7, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157508

RESUMO

Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one-third of the regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large "missing cache" of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms.


Assuntos
Processamento Alternativo , Redes Reguladoras de Genes , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HEK293 , Humanos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , RNA Mensageiro/genética
12.
J Biol Chem ; 291(29): 14927-38, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226542

RESUMO

Tumor development driven by inflammation is now an established phenomenon, but the role that complement plays remains uncertain. Recent evidence has suggested that various components of the complement (C) cascade may influence tumor development in disparate ways; however, little attention has been paid to that of the membrane attack complex (MAC). This is despite abundant evidence documenting the effects of this complex on cell behavior, including cell activation, protection from/induction of apoptosis, release of inflammatory cytokines, growth factors, and ECM components and regulators, and the triggering of the NLRP3 inflammasome. Here we present a novel approach to this issue by using global gene expression studies in conjunction with a systems biology analysis. Using network analysis of MAC-responsive expression changes, we demonstrate a cluster of co-regulated genes known to have impact in the extracellular space and on the supporting stroma and with well characterized tumor-promoting roles. Network analysis highlighted the central role for EGF receptor activation in mediating the observed responses to MAC exposure. Overall, the study sheds light on the mechanisms by which sublytic MAC causes tumor cell responses and exposes a gene expression signature that implicates MAC as a driver of tumor progression. These findings have implications for understanding of the roles of complement and the MAC in tumor development and progression, which in turn will inform future therapeutic strategies in cancer.


Assuntos
Carcinogênese/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Algoritmos , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Modelos Imunológicos , Reação em Cadeia da Polimerase em Tempo Real , Biologia de Sistemas
13.
Bone ; 84: 253-261, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26721735

RESUMO

Degenerative joint diseases such as osteoarthritis are characterised by aberrant region-specific bone formation and abnormal bone mineral content. A recent study suggested a role for the complement membrane attack complex in experimental models of osteoarthritis. Since CD59a is the principal regulator of the membrane attack complex in mice, we evaluated the impact of CD59a gene deletion upon maintenance of bone architecture. In vivo bone morphology analysis revealed that male CD59a-deficient mice have increased femur length and cortical bone volume, albeit with reduced bone mineral density. However, this phenomenon was not observed in female mice. Histomorphometric analysis of the trabecular bone showed increased rates of bone homeostasis, with both increased bone resorption and mineral apposition rate in CD59a-deficient male mice. When bone cells were studied in isolation, in vitro osteoclastogenesis was significantly increased in male CD59a-deficient mice, although osteoblast formation was not altered. Our data reveal, for the first time, that CD59a is a regulator of bone growth and homeostasis. CD59a ablation in male mice results in longer and wider bones, but with less density, which is likely a major contributing factor for their susceptibility to osteoarthritis. These findings increase our understanding of the role of complement regulation in degenerative arthritis.


Assuntos
Envelhecimento/patologia , Osso e Ossos/patologia , Antígenos CD59/metabolismo , Proteínas do Sistema Complemento/metabolismo , Deleção de Genes , Caracteres Sexuais , Animais , Desenvolvimento Ósseo , Células da Medula Óssea/patologia , Remodelação Óssea , Feminino , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Fenótipo
14.
Cell Rep ; 13(6): 1206-1220, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26527002

RESUMO

TRIM-NHL proteins are conserved among metazoans and control cell fate decisions in various stem cell linages. The Drosophila TRIM-NHL protein Brain tumor (Brat) directs differentiation of neuronal stem cells by suppressing self-renewal factors. Brat is an RNA-binding protein and functions as a translational repressor. However, it is unknown which RNAs Brat regulates and how RNA-binding specificity is achieved. Using RNA immunoprecipitation and RNAcompete, we identify Brat-bound mRNAs in Drosophila embryos and define consensus binding motifs for Brat as well as a number of additional TRIM-NHL proteins, indicating that TRIM-NHL proteins are conserved, sequence-specific RNA-binding proteins. We demonstrate that Brat-mediated repression and direct RNA-binding depend on the identified motif and show that binding of the localization factor Miranda to the Brat-NHL domain inhibits Brat activity. Finally, to unravel the sequence specificity of the NHL domain, we crystallize the Brat-NHL domain in complex with RNA and present a high-resolution protein-RNA structure of this fold.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dados de Sequência Molecular , Ligação Proteica , RNA Mensageiro/metabolismo
15.
J Immunol ; 195(1): 96-104, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26002980

RESUMO

The localization of memory T cells to human skin is essential for long-term immune surveillance and the maintenance of barrier integrity. The expression of CCR8 during naive T cell activation is controlled by skin-specific factors derived from epidermal keratinocytes and not by resident dendritic cells. In this study, we show that the CCR8-inducing factors are heat stable and protease resistant and include the vitamin D3 metabolite 1α,25-dihydroxyvitamin D3 and PGE2. The effect of either metabolite alone on CCR8 expression was weak, whereas their combination resulted in robust CCR8 expression. Elevation of intracellular cAMP was essential because PGE2 could be substituted with the adenylyl cyclase agonist forskolin, and CCR8 expression was sensitive to protein kinase A inhibition. For effective induction, exposure of naive T cells to these epidermal factors needed to occur either prior to or during T cell activation even though CCR8 was only detected 4-5 d later in proliferating T cells. The importance of tissue environments in maintaining cellular immune surveillance networks within distinct healthy tissues provides a paradigm shift in adaptive immunity. Epidermal-derived vitamin D3 metabolites and PGs provide an essential cue for the localization of CCR8(+) immune surveillance T cells within healthy human skin.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Calcitriol/metabolismo , Dinoprostona/metabolismo , Epiderme/imunologia , Queratinócitos/imunologia , Imunidade Adaptativa , Adenilil Ciclases/genética , Adenilil Ciclases/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Calcitriol/farmacologia , AMP Cíclico/imunologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/imunologia , Dinoprostona/farmacologia , Células Epidérmicas , Epiderme/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Temperatura Alta , Humanos , Vigilância Imunológica , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica , Receptores CCR8/genética , Receptores CCR8/imunologia , Transdução de Sinais
16.
Genome Biol ; 16: 94, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25962635

RESUMO

BACKGROUND: Brain tumor (BRAT) is a Drosophila member of the TRIM-NHL protein family. This family is conserved among metazoans and its members function as post-transcriptional regulators. BRAT was thought to be recruited to mRNAs indirectly through interaction with the RNA-binding protein Pumilio (PUM). However, it has recently been demonstrated that BRAT directly binds to RNA. The precise sequence recognized by BRAT, the extent of BRAT-mediated regulation, and the exact roles of PUM and BRAT in post-transcriptional regulation are unknown. RESULTS: Genome-wide identification of transcripts associated with BRAT or with PUM in Drosophila embryos shows that they bind largely non-overlapping sets of mRNAs. BRAT binds mRNAs that encode proteins associated with a variety of functions, many of which are distinct from those implemented by PUM-associated transcripts. Computational analysis of in vitro and in vivo data identified a novel RNA motif recognized by BRAT that confers BRAT-mediated regulation in tissue culture cells. The regulatory status of BRAT-associated mRNAs suggests a prominent role for BRAT in post-transcriptional regulation, including a previously unidentified role in transcript degradation. Transcriptomic analysis of embryos lacking functional BRAT reveals an important role in mediating the decay of hundreds of maternal mRNAs during the maternal-to-zygotic transition. CONCLUSIONS: Our results represent the first genome-wide analysis of the mRNAs associated with a TRIM-NHL protein and the first identification of an RNA motif bound by this protein family. BRAT is a prominent post-transcriptional regulator in the early embryo through mechanisms that are largely independent of PUM.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/genética , RNA Mensageiro Estocado/genética , Proteínas de Ligação a RNA/genética , Animais , Sítios de Ligação , Neoplasias Encefálicas/diagnóstico , Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Proteínas de Drosophila/metabolismo , Repressão Epigenética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Mutação , Proteínas Nucleares , RNA Mensageiro Estocado/metabolismo , Proteínas de Ligação a RNA/metabolismo , Técnicas de Cultura de Tecidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Science ; 347(6218): 1254806, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25525159

RESUMO

To facilitate precision medicine and whole-genome annotation, we developed a machine-learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of more than 650,000 intronic and exonic variants revealed widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations that are more than 30 nucleotides from any splice site alter splicing nine times as often as common variants, and missense exonic disease mutations that have the least impact on protein function are five times as likely as others to alter splicing. We detected tens of thousands of disease-causing mutations, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole-genome sequencing of individuals with autism revealed misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine.


Assuntos
Inteligência Artificial , Transtornos Globais do Desenvolvimento Infantil/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Estudo de Associação Genômica Ampla/métodos , Anotação de Sequência Molecular/métodos , Atrofia Muscular Espinal/genética , Splicing de RNA/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Simulação por Computador , DNA/genética , Éxons/genética , Código Genético , Marcadores Genéticos , Variação Genética , Humanos , Íntrons/genética , Modelos Genéticos , Proteína 1 Homóloga a MutL , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sítios de Splice de RNA/genética , Proteínas de Ligação a RNA/genética
18.
PLoS One ; 9(10): e110479, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25353956

RESUMO

Nucleosomes regulate many DNA-dependent processes by controlling the accessibility of DNA, and DNA sequences such as the poly-dA:dT element are known to affect nucleosome binding. We demonstrate that poly-dA:dT tracts form an asymmetric barrier to nucleosome movement in vivo, mediated by ATP-dependent chromatin remodelers. We theorize that nucleosome transit over poly-A elements is more energetically favourable in one direction, leading to an asymmetric arrangement of nucleosomes around these sequences. We demonstrate that different arrangements of poly-A and poly-T tracts result in very different outcomes for nucleosome occupancy in yeast, mouse, and human, and show that yeast takes advantage of this phenomenon in its promoter architecture.


Assuntos
DNA/genética , Nucleossomos/genética , Poli dA-dT/genética , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Camundongos , Regiões Promotoras Genéticas , Leveduras/genética
19.
J Immunol ; 191(3): 1006-10, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23817414

RESUMO

The complement system is a potent component of the innate immune response, promoting inflammation and orchestrating defense against pathogens. However, dysregulation of complement is critical to several autoimmune and inflammatory syndromes. Elevated expression of the proinflammatory cytokine IL-1ß is often linked to such diseases. In this study, we reveal the mechanistic link between complement and IL-1ß secretion using murine dendritic cells. IL-1ß secretion occurs following intracellular caspase-1 activation by inflammasomes. We show that complement elicits secretion of both IL-1ß and IL-18 in vitro and in vivo via the NLRP3 inflammasome. This effect depends on the inflammasome components NLRP3 and ASC, as well as caspase-1 activity. Interestingly, sublethal complement membrane attack complex formation, but not the anaphylatoxins C3a and C5a, activated the NLRP3 inflammasome in vivo. These findings provide insight into the molecular processes underlying complement-mediated inflammation and highlight the possibility of targeting IL-1ß to control complement-induced disease and pathological inflammation.


Assuntos
Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Células Dendríticas/imunologia , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Animais , Células da Medula Óssea , Proteínas de Transporte/genética , Células Cultivadas , Complemento C6/deficiência , Complemento C6/genética , Proteínas do Sistema Complemento/imunologia , Células Dendríticas/metabolismo , Ativação Enzimática , Inflamação/imunologia , Interleucina-18/biossíntese , Interleucina-18/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor da Anafilatoxina C5a/deficiência , Receptor da Anafilatoxina C5a/genética , Receptores de Complemento/deficiência , Receptores de Complemento/genética , Transdução de Sinais
20.
Elife ; 2: e00675, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23795294

RESUMO

The gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signaling pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways. DOI:http://dx.doi.org/10.7554/eLife.00675.001.


Assuntos
Arabidopsis/metabolismo , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transcrição Gênica , Arabidopsis/genética , Imunoprecipitação da Cromatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA