Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 79(8): 1914-1918, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38943535

RESUMO

OBJECTIVES: Mycobacterium abscessus has emerged as an opportunistic pathogen responsible for lung infections, especially in cystic fibrosis patients. In spite of the production of the broad-spectrum ß-lactamase BlaMab, the carbapenem imipenem is recommended in the initial phase of the treatment of pulmonary infections. Here, we determine whether the addition of vaborbactam, a second-generation ß-lactamase inhibitor belonging to the boronate family, improves the activity of ß-lactams against M. abscessus. METHODS: The activity of ß-lactams, alone or in combination with vaborbactam, was evaluated against M. abscessus CIP104536 by determining MICs, time-killing and intramacrophage activity. Kinetic parameters for the inhibition of BlaMab by vaborbactam were determined by spectrophotometry. RESULTS: The combination of vaborbactam (8 mg/L) with ß-lactams decreased more than 8 times the MIC of amoxicillin (from >1024 to 128 mg/L) and 2 times the MICs of meropenem (from 16 to 8 mg/L) and imipenem (from 4 to 2 mg/L). The reduction of the MICs was less than that obtained with avibactam at 4 mg/L for amoxicillin (from >1024 to 16 mg/L, more than 64 times less) and for meropenem (from 16 to 4 mg/L, 4 times less). In vitro and intracellularly, M. abscessus was not killed by the meropenem/vaborbactam combination, in spite of significant in vitro inhibition of BlaMab by vaborbactam. CONCLUSIONS: Inhibition of BlaMab by vaborbactam decreases the MIC of ß-lactams, including that of meropenem. As meropenem/vaborbactam is clinically available, this combination offers an alternative therapeutic option that should be evaluated for the treatment of pulmonary infections due to M. abscessus.


Assuntos
Antibacterianos , Ácidos Borônicos , Testes de Sensibilidade Microbiana , Mycobacterium abscessus , beta-Lactamas , Mycobacterium abscessus/efeitos dos fármacos , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Ácidos Borônicos/farmacologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Sinergismo Farmacológico , Inibidores de beta-Lactamases/farmacologia , Humanos , Animais , Camundongos , Viabilidade Microbiana/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-30718252

RESUMO

The Enterococcus faecium l,d-transpeptidase (Ldtfm) mediates resistance to most ß-lactam antibiotics in this bacterium by replacing classical peptidoglycan polymerases. The catalytic Cys of Ldtfm is rapidly acylated by ß-lactams belonging to the carbapenem class but not by penams or cephems. We previously reported quantum calculations and kinetic analyses for Ldtfm and showed that the inactivation profile is not determined by differences in drug binding (KD [equilibrium dissociation constant] values in the 50 to 80 mM range). In this study, we analyzed the reaction of a Cys sulfhydryl with various ß-lactams in the absence of the enzyme environment in order to compare the intrinsic reactivity of drugs belonging to the penam, cephem, and carbapenem classes. For this purpose, we synthesized cyclic Cys-Asn (cCys-Asn) to generate a soluble molecule with a sulfhydryl closely mimicking a cysteine in a polypeptide chain, thereby avoiding free reactive amino and carboxyl groups. Computational studies identified a thermodynamically favored pathway involving a concerted rupture of the ß-lactam amide bond and formation of an amine anion. Energy barriers indicated that the drug reactivity was the highest for nonmethylated carbapenems, intermediate for methylated carbapenems and cephems, and the lowest for penams. Electron-withdrawing groups were key reactivity determinants by enabling delocalization of the negative charge of the amine anion. Acylation rates of cCys-Asn determined by spectrophotometry revealed the same order in the reactivity of ß-lactams. We concluded that the rate of Ldtfm acylation is largely determined by the ß-lactam reactivity with one exception, as the enzyme catalytic pocket fully compensated for the detrimental effect of carbapenem methylation.


Assuntos
Antibacterianos/metabolismo , Carbapenêmicos/metabolismo , Cisteína/química , Enterococcus faecium/enzimologia , Peptidil Transferases/metabolismo , Acilação , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Domínio Catalítico/fisiologia , Enterococcus faecium/metabolismo , Metilação , Peptidoglicano/química
3.
Elife ; 52016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27767957

RESUMO

The target of ß-lactam antibiotics is the D,D-transpeptidase activity of penicillin-binding proteins (PBPs) for synthesis of 4→3 cross-links in the peptidoglycan of bacterial cell walls. Unusual 3→3 cross-links formed by L,D-transpeptidases were first detected in Escherichia coli more than four decades ago, however no phenotype has previously been associated with their synthesis. Here we show that production of the L,D-transpeptidase YcbB in combination with elevated synthesis of the (p)ppGpp alarmone by RelA lead to full bypass of the D,D-transpeptidase activity of PBPs and to broad-spectrum ß-lactam resistance. Production of YcbB was therefore sufficient to switch the role of (p)ppGpp from antibiotic tolerance to high-level ß-lactam resistance. This observation identifies a new mode of peptidoglycan polymerization in E. coli that relies on an unexpectedly small number of enzyme activities comprising the glycosyltransferase activity of class A PBP1b and the D,D-carboxypeptidase activity of DacA in addition to the L,D-transpeptidase activity of YcbB.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Peptidil Transferases/metabolismo , Resistência beta-Lactâmica , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Ligases/metabolismo
4.
Mol Microbiol ; 98(1): 90-100, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26101813

RESUMO

In Mycobacterium tuberculosis and ampicillin-resistant mutants of Enterococcus faecium, the classical target of ß-lactam antibiotics is bypassed by L,D-transpeptidases that form unusual 3 → 3 peptidoglycan cross-links. ß-lactams of the carbapenem class, such as ertapenem, are mimics of the acyl donor substrate and inactivate l,d-transpeptidases by acylation of their catalytic cysteine. We have blocked the acyl donor site of E. faecium L,D-transpeptidase Ldt(fm) by ertapenem and identified the acyl acceptor site based on analyses of chemical shift perturbations induced by binding of peptidoglycan fragments to the resulting acylenzyme. An nuclear magnetic resonance (NMR)-driven docking structure of the complex revealed key hydrogen interactions between the acyl acceptor and Ldt(fm) that were evaluated by site-directed mutagenesis and development of a cross-linking assay. Three residues are reported as critical for stabilisation of the acceptor in the Ldt(fm) active site and proper orientation of the nucleophilic nitrogen for the attack of the acylenzyme carbonyl. Identification of the catalytic pocket dedicated to the acceptor substrate opens new perspectives for the design of inhibitors with an original mode of action that could act alone or in synergy with ß-lactams.


Assuntos
Proteínas de Bactérias/metabolismo , Enterococcus faecium/enzimologia , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Acilação , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Ertapenem , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Peptidoglicano/química , Peptidoglicano/metabolismo , Peptidil Transferases/genética , Especificidade por Substrato , beta-Lactamas/farmacologia
5.
J Antimicrob Chemother ; 70(4): 1051-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25525201

RESUMO

OBJECTIVES: Two ß-lactams, cefoxitin and imipenem, are part of the reference treatment for pulmonary infections with Mycobacterium abscessus. M. abscessus has recently been shown to produce a broad-spectrum ß-lactamase, BlaMab, indicating that the combination of ß-lactams with a BlaMab inhibitor may improve treatment efficacy. The objectives of this study were to evaluate the impact of BlaMab production on the efficacy of ß-lactams in vitro and to assess the benefit of BlaMab inhibition on the activity of ß-lactams intracellularly and in an animal model. METHODS: We analysed the mechanism and kinetics of BlaMab inactivation by avibactam, a non-ß-lactam ß-lactamase inhibitor currently in Phase III of development, in combination with ceftazidime for the treatment of serious infections due to Gram-negative bacteria. We then deleted the gene encoding BlaMab to assess the extent of BlaMab inhibition by avibactam based on a comparison of the impact of chemical and genetic inactivation. Finally, the efficacy of amoxicillin in combination with avibactam was evaluated in cultured human macrophages and in a zebrafish model of M. abscessus infection. RESULTS: We showed that avibactam efficiently inactivated BlaMab via the reversible formation of a covalent adduct. An inhibition of BlaMab by avibactam was observed in both infected macrophages and zebrafish. CONCLUSIONS: Our data identify avibactam as the first efficient inhibitor of BlaMab and strongly suggest that ß-lactamase inhibition should be evaluated to provide improved therapeutic options for M. abscessus infections.


Assuntos
Compostos Azabicíclicos/metabolismo , Compostos Azabicíclicos/uso terapêutico , Mycobacterium/efeitos dos fármacos , Mycobacterium/enzimologia , Inibidores de beta-Lactamases/metabolismo , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamases/metabolismo , Amoxicilina/metabolismo , Amoxicilina/uso terapêutico , Animais , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Linhagem Celular , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Modelos Animais , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/microbiologia , Resultado do Tratamento , Peixe-Zebra
6.
Biomol NMR Assign ; 8(2): 339-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23907322

RESUMO

Penicillin-binding proteins were long considered as the only peptidoglycan cross-linking enzymes and one of the main targets of ß-lactam antibiotics. A new class of transpeptidases, the L,D-transpeptidases, has emerged in the last decade. In most Gram-negative and Gram-positive bacteria, these enzymes generally have nonessential roles in peptidoglycan synthesis. In some clostridiae and mycobacteria, such as Mycobacterium tuberculosis, they are nevertheless responsible for the major peptidoglycan cross-linking pathway. L,D-Transpeptidases are thus considered as appealing new targets for the development of innovative therapeutic approaches. Carbapenems are currently investigated in this perspective as they are active on extensively drug-resistant M. tuberculosis and represent the only ß-lactam class inhibiting L,D-transpeptidases. The molecular basis of the enzyme selectivity for carbapenems nevertheless remains an open question. Here we present the backbone and side-chain (1)H, (13)C, (15)N NMR assignments of the catalytic domain of Enterococcus faecium L,D-transpeptidase before and after acylation with the carbapenem ertapenem, as a prerequisite for further structural and functional studies.


Assuntos
Cisteína/metabolismo , Enterococcus faecium/enzimologia , Ressonância Magnética Nuclear Biomolecular , Peptidil Transferases/química , Peptidil Transferases/metabolismo , beta-Lactamas/metabolismo , Acilação/efeitos dos fármacos , Sequência de Aminoácidos , Domínio Catalítico , Ertapenem , Dados de Sequência Molecular , beta-Lactamas/farmacologia
7.
Eur J Med Chem ; 67: 208-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23867605

RESUMO

The D-aspartate ligase of Enterococcus faecium (Aslfm) is an attractive target for the development of narrow-spectrum antibacterial agents that are active against multidrug-resistant E. faecium. Although there is currently little available information regarding the structural characteristics of Aslfm, we exploited the knowledge that this enzyme belongs to the ATP-grasp superfamily to target its ATP binding site. In the first design stage, we synthesized and screened a small library of known ATP-competitive inhibitors of ATP-grasp enzymes. A series of amino-oxazoles derived from bacterial biotin carboxylase inhibitors showed low micromolar activity. The most potent inhibitor compound 12, inhibits Aslfm with a Ki value of 2.9 µM. In the second design stage, a validated ligand-based pharmacophore modeling approach was used, taking the newly available inhibition data of an initial series of compounds into account. Experimental evaluation of the virtual screening hits identified two novel structural types of Aslfm inhibitors with 7-amino-9H-purine (18) and 7-amino-1H-pyrazolo[3,4-d]pyrimidine (30 and 34) scaffolds, and also with Ki values in the low micromolar range. Investigation the inhibitors modes of action confirmed that these compounds are competitive with respect to the ATP molecule. The binding of inhibitors to the target enzyme was also studied using isothermal titration calorimetry (ITC). Compounds 6, 12, 18, 30 and 34 represent the first inhibitors of Aslfm reported to date, and are an important step forward in combating infections due to E. faecium.


Assuntos
Ácido D-Aspártico/metabolismo , Descoberta de Drogas , Enterococcus faecium/enzimologia , Inibidores Enzimáticos/farmacologia , Ligases/antagonistas & inibidores , Relação Dose-Resposta a Droga , Enterococcus faecium/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ligases/metabolismo , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
8.
PLoS One ; 8(7): e67831, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861815

RESUMO

Active-site serine D,D-transpeptidases belonging to the penicillin-binding protein family (PBPs) have been considered for a long time as essential for peptidoglycan cross-linking in all bacteria. However, bypass of the PBPs by an L,D-transpeptidase (Ldt(fm)) conveys high-level resistance to ß-lactams of the penam class in Enterococcus faecium with a minimal inhibitory concentration (MIC) of ampicillin >2,000 µg/ml. Unexpectedly, Ldt(fm) does not confer resistance to ß-lactams of the carbapenem class (imipenem MIC = 0.5 µg/ml) whereas cephems display residual activity (ceftriaxone MIC = 128 µg/ml). Mass spectrometry, fluorescence kinetics, and NMR chemical shift perturbation experiments were performed to explore the basis for this specificity and identify ß-lactam features that are critical for efficient L,D-transpeptidase inactivation. We show that imipenem, ceftriaxone, and ampicillin acylate Ldt(fm) by formation of a thioester bond between the active-site cysteine and the ß-lactam-ring carbonyl. However, slow acylation and slow acylenzyme hydrolysis resulted in partial Ldt(fm) inactivation by ampicillin and ceftriaxone. For ampicillin, Ldt(fm) acylation was followed by rupture of the C(5)-C(6) bond of the ß-lactam ring and formation of a secondary acylenzyme prone to hydrolysis. The saturable step of the catalytic cycle was the reversible formation of a tetrahedral intermediate (oxyanion) without significant accumulation of a non-covalent complex. In agreement, a derivative of Ldt(fm) blocked in acylation bound ertapenem (a carbapenem), ceftriaxone, and ampicillin with similar low affinities. Thus, oxyanion and acylenzyme stabilization are both critical for rapid L,D-transpeptidase inactivation and antibacterial activity. These results pave the way for optimization of the ß-lactam scaffold for L,D-transpeptidase-inactivation.


Assuntos
Ampicilina/química , Proteínas de Bactérias/antagonistas & inibidores , Ceftriaxona/química , Enterococcus faecium/química , Imipenem/química , Peptidil Transferases/antagonistas & inibidores , Acilação , Proteínas de Bactérias/química , Enterococcus faecium/enzimologia , Cinética , Peptidil Transferases/química , Proteínas Recombinantes/química , Relação Estrutura-Atividade , Especificidade por Substrato , Resistência beta-Lactâmica
9.
Structure ; 20(5): 850-61, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22579252

RESUMO

ß-lactams inhibit peptidoglycan polymerization by acting as suicide substrates of essential d,d-transpeptidases. Bypass of these enzymes by unrelated l,d-transpeptidases results in ß-lactam resistance, although carbapenems remain unexpectedly active. To gain insight into carbapenem specificity of l,d-transpeptidases (Ldts), we solved the nuclear magnetic resonance (NMR) structures of apo and imipenem-acylated Bacillus subtilis Ldt and show that the cysteine nucleophile is present as a neutral imidazole-sulfhydryl pair in the substrate-free enzyme. NMR relaxation dispersion does not reveal any preexisting conformational exchange in the apoenzyme, and change in flexibility is not observed upon noncovalent binding of ß-lactams (K(D) > 37.5 mM). In contrast, covalent modification of active cysteine by both carbapenems and 2-nitro-5-thiobenzoate induces backbone flexibility that does not result from disruption of the imidazole-sulfhydryl proton interaction or steric hindrance. The chemical step of the reaction determines enzyme specificity since no differences in drug affinity were observed.


Assuntos
Antibacterianos/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Peptidil Transferases/química , beta-Lactamas/química , Antibacterianos/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cisteína/química , Cisteína/metabolismo , Simulação de Dinâmica Molecular , Nitrobenzoatos/química , Nitrobenzoatos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Peptidil Transferases/metabolismo , Especificidade por Substrato , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , beta-Lactamas/metabolismo
10.
J Biol Chem ; 286(26): 22777-84, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21543331

RESUMO

Peptidoglycan is predominantly cross-linked by serine DD-transpeptidases in most bacterial species. The enzymes are the essential targets of ß-lactam antibiotics. However, unrelated cysteine LD-transpeptidases have been recently recognized as a predominant mode of peptidoglycan cross-linking in Mycobacterium tuberculosis and as a bypass mechanism conferring resistance to all ß-lactams, except carbapenems such as imipenem, in Enterococcus faecium. Investigation of the mechanism of inhibition of this new ß-lactam target showed that acylation of the E. faecium enzyme (Ldt(fm)) by imipenem is irreversible. Using fluorescence kinetics, an original approach was developed to independently determine the catalytic constants for imipenem binding (k(1) = 0.061 µM(-1) min(-1)) and acylation (k(inact) = 4.5 min(-1)). The binding step was limiting at the minimal drug concentration required for bacterial growth inhibition. The Michaelis complex was committed to acylation because its dissociation was negligible. The emergence of imipenem resistance involved substitutions in Ldt(fm) that reduced the rate of formation of the non-covalent complex but only marginally affected the efficiency of the acylation step. The methods described in this study will facilitate development of new carbapenems active on extensively resistant M. tuberculosis.


Assuntos
Aciltransferases/antagonistas & inibidores , Antibacterianos/farmacocinética , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterococcus faecium/enzimologia , beta-Lactamas/farmacologia , Acetilação/efeitos dos fármacos , Aciltransferases/química , Aciltransferases/metabolismo , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cinética , Mycobacterium tuberculosis/enzimologia , beta-Lactamas/química
11.
J Biol Chem ; 282(18): 13151-9, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17311917

RESUMO

We report here the first direct assessment of the specificity of a class of peptidoglycan cross-linking enzymes, the L,D-transpeptidases, for the highly diverse structure of peptidoglycan precursors of Gram-positive bacteria. The lone functionally characterized member of this new family of active site cysteine peptidases, Ldt(fm) from Enterococcus faecium, was previously shown to bypass the D,D-transpeptidase activity of the classical penicillin-binding proteins leading to high level cross-resistance to glycopeptide and beta-lactam antibiotics. Ldt(fm) homologues from Bacillus subtilis (Ldt(Bs)) and E. faecalis (Ldt(fs)) were found here to cross-link their cognate disaccharide-peptide subunits containing meso-diaminopimelic acid (mesoDAP(3)) and L-Lys(3)-L-Ala-L-Ala at the third position of the stem peptide, respectively, instead of L-Lys(3)-d-iAsn in E. faecium. Ldt(fs) differed from Ldt(fm) and Ldt(Bs) by its capacity to hydrolyze the L-Lys(3)-D-Ala(4) bond of tetrapeptide (L,D-carboxypeptidase activity) and pentapeptide (L,D-endopeptidase activity) stems, in addition to the common cross-linking activity. The three enzymes were specific for their cognate acyl acceptors in the cross-linking reaction. In contrast to Ldt(fs), which was also specific for its cognate acyl donor, Ldt(fm) tolerated substitution of L-Lys(3)-D-iAsn by L-Lys(3)-L-Ala-L-Ala. Likewise, Ldt(Bs) tolerated substitution of mesoDAP(3) by L-Lys(3)-D-iAsn and L-Lys(3)-L-Ala-L-Ala in the acyl donor. Thus, diversification of the structure of peptidoglycan precursors associated with speciation has led to a parallel evolution of the substrate specificity of the L,D-transpeptidases affecting mainly the recognition of the acyl acceptor. Blocking the assembly of the side chain could therefore be used to combat antibiotic resistance involving L,D-transpeptidases.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Enterococcus faecalis/genética , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/genética , Peptidil Transferases/genética , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Parede Celular/genética , Cisteína Endopeptidases/genética , Ácido Diaminopimélico/metabolismo , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/enzimologia , Oligopeptídeos/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato
12.
J Biol Chem ; 281(17): 11586-94, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16510449

RESUMO

D-aspartate ligase has remained the last unidentified peptide bond-forming enzyme in the peptidoglycan assembly pathway of Gram-positive bacteria. Here we show that a two-gene cluster of Enterococcus faecium encodes aspartate racemase (Racfm) and ligase (Aslfm) for incorporation of D-Asp into the side chain of the peptidoglycan precursor. Aslfm was identified as a new member of the ATP-grasp protein superfamily, which includes a diverse set of enzymes catalyzing ATP-dependent carboxylate-amine ligation reactions. Aslfm specifically ligated the beta-carboxylate of D-Asp to the epsilon-amino group of L-Lys in the nucleotide precursor UDP-N-acetylmuramyl-pentapeptide. D-iso-asparagine was not a substrate of Aslfm, indicating that the presence of this amino acid in the peptidoglycan of E. faecium results from amidation of the alpha-carboxyl of D-Asp after its addition to the precursor. Heterospecific expression of the genes encoding Racfm and Aslfm in Enterococcus faecalis led to production of stem peptides substituted by D-Asp instead of L-Ala2, providing evidence for the in vivo specificity and function of these enzymes. Strikingly, sequencing of the cross-bridges revealed that substitution of L-Ala2 by D-Asp is tolerated by the d,d-transpeptidase activity of the penicillin-binding proteins both in the acceptor and in the donor substrates. The Aslfm ligase appears as an attractive target for the development of narrow spectrum antibiotics active against multiresistant E. faecium.


Assuntos
Ácido D-Aspártico/metabolismo , Enterococcus faecium/enzimologia , Ligases/metabolismo , Peptidoglicano/biossíntese , Trifosfato de Adenosina/metabolismo , Isomerases de Aminoácido/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Ligases/isolamento & purificação , Dados de Sequência Molecular , Peptidoglicano/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
13.
J Biol Chem ; 280(46): 38146-52, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16144833

RESUMO

The beta-lactam antibiotics remain the most commonly used to treat severe infections. Because of structural similarity between the beta-lactam ring and the d-alanyl(4)-d-alanine(5) extremity of bacterial cell wall precursors, the drugs act as suicide substrates of the dd-transpeptidases that catalyze the last cross-linking step of cell wall assembly. Here, we show that this mechanism of action can be defeated by a novel type of transpeptidase identified for the first time by reverse genetics in abeta-lactam-resistant mutant of Enterococcus faecium. The enzyme, Ldt(fm), catalyzes in vitro the cross-linking of peptidoglycan subunits in a beta-lactam-insensitive ld-transpeptidation reaction. The specificity of Ldt(fm) for the l-lysyl(3)-d-alanine(4) peptide bond of tetrapeptide donors accounts for resistance because the substrate does not mimic beta-lactams in contrast to d-alanyl(4)-d-alanine(5) in the pentapeptide donors required for dd-transpeptidation. Ldt(fm) homologues are encountered sporadically among taxonomically distant bacteria, indicating that ld-transpeptidase-mediated resistance may emerge in various pathogens.


Assuntos
Enterococcus faecium/enzimologia , Peptidoglicano/química , Alanina/química , Sequência de Aminoácidos , Ampicilina/farmacologia , Animais , Antibacterianos/farmacologia , Encéfalo/microbiologia , Catálise , Parede Celular/metabolismo , Cromatografia , Cromatografia por Troca Iônica , Reagentes de Ligações Cruzadas/farmacologia , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Enterococcus faecium/metabolismo , Escherichia coli/metabolismo , Espectrometria de Massas , Modelos Biológicos , Modelos Químicos , Modelos Genéticos , Dados de Sequência Molecular , Peptídeos/química , Peptidil Transferases/química , Ligação Proteica , Especificidade por Substrato , beta-Lactamas/química , beta-Lactamas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA