Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617208

RESUMO

Compromised vascular supply and insufficient neovascularization impede bone repair, increasing risk of non-union. Cyr61, Cysteine-rich angiogenic inducer of 61kD (also known as CCN1), is a matricellular growth factor that is regulated by mechanical cues during fracture repair. Here, we map the distribution of endogenous Cyr61 during bone repair and evaluate the effects of recombinant Cyr61 delivery on vascularized bone regeneration. In vitro, Cyr61 treatment did not alter chondrogenesis or osteogenic gene expression, but significantly enhanced angiogenesis. In a mouse femoral fracture model, Cyr61 delivery did not alter cartilage or bone formation, but accelerated neovascularization during fracture repair. Early initiation of ambulatory mechanical loading disrupted Cyr61-induced neovascularization. Together, these data indicate that Cyr61 delivery can enhance angiogenesis during bone repair, particularly for fractures with stable fixation, and may have therapeutic potential for fractures with limited blood vessel supply.

2.
Sci Adv ; 7(11)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33712463

RESUMO

Here, we present an approach to model and adapt the mechanical regulation of morphogenesis that uses contractile cells as sculptors of engineered tissue anisotropy in vitro. Our method uses heterobifunctional cross-linkers to create mechanical boundary constraints that guide surface-directed sculpting of cell-laden extracellular matrix hydrogel constructs. Using this approach, we engineered linearly aligned tissues with structural and mechanical anisotropy. A multiscale in silico model of the sculpting process was developed to reveal that cell contractility increases as a function of principal stress polarization in anisotropic tissues. We also show that the anisotropic biophysical microenvironment of linearly aligned tissues potentiates soluble factor-mediated tenogenic and myogenic differentiation of mesenchymal stem cells. The application of our method is demonstrated by (i) skeletal muscle arrays to screen therapeutic modulators of acute oxidative injury and (ii) a 3D microphysiological model of lung cancer cachexia to study inflammatory and oxidative muscle injury induced by tumor-derived signals.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Anisotropia , Diferenciação Celular , Matriz Extracelular/química , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
3.
Nano Converg ; 8(1): 3, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33528697

RESUMO

Hepatic fibrosis is a foreshadowing of future adverse events like liver cirrhosis, liver failure, and cancer. Hepatic stellate cell activation is the main event of liver fibrosis, which results in excessive extracellular matrix deposition and hepatic parenchyma's disintegration. Several biochemical and molecular assays have been introduced for in vitro study of the hepatic fibrosis progression. However, they do not forecast real-time events happening to the in vitro models. Trans-epithelial electrical resistance (TEER) is used in cell culture science to measure cell monolayer barrier integrity. Herein, we explored TEER measurement's utility for monitoring fibrosis development in a dynamic cell culture microphysiological system. Immortal HepG2 cells and fibroblasts were co-cultured, and transforming growth factor ß1 (TGF-ß1) was used as a fibrosis stimulus to create a liver fibrosis-on-chip model. A glass chip-based embedded TEER and reactive oxygen species (ROS) sensors were employed to gauge the effect of TGF-ß1 within the microphysiological system, which promotes a positive feedback response in fibrosis development. Furthermore, albumin, Urea, CYP450 measurements, and immunofluorescent microscopy were performed to correlate the following data with embedded sensors responses. We found that chip embedded electrochemical sensors could be used as a potential substitute for conventional end-point assays for studying fibrosis in microphysiological systems.

4.
ACS Nano ; 13(7): 7627-7643, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31194909

RESUMO

The vasculature is an essential component of the circulatory system that plays a vital role in the development, homeostasis, and disease of various organs in the human body. The ability to emulate the architecture and transport function of blood vessels in the integrated context of their associated organs represents an important requirement for studying a wide range of physiological processes. Traditional in vitro models of the vasculature, however, largely fail to offer such capabilities. Here we combine microfluidic three-dimensional (3D) cell culture with the principle of vasculogenic self-assembly to engineer perfusable 3D microvascular beds in vitro. Our system is created in a micropatterned hydrogel construct housed in an elastomeric microdevice that enables coculture of primary human vascular endothelial cells and fibroblasts to achieve de novo formation, anastomosis, and controlled perfusion of 3D vascular networks. An open-top chamber design adopted in this hybrid platform also makes it possible to integrate the microengineered 3D vasculature with other cell types to recapitulate organ-specific cellular heterogeneity and structural organization of vascularized human tissues. Using these capabilities, we developed stem cell-derived microphysiological models of vascularized human adipose tissue and the blood-retinal barrier. Our approach was also leveraged to construct a 3D organotypic model of vascularized human lung adenocarcinoma as a high-content drug screening platform to simulate intravascular delivery, tumor-killing effects, and vascular toxicity of a clinical chemotherapeutic agent. Furthermore, we demonstrated the potential of our platform for applications in nanomedicine by creating microengineered models of vascular inflammation to evaluate a nanoengineered drug delivery system based on active targeting liposomal nanocarriers. These results represent a significant improvement in our ability to model the complexity of native human tissues and may provide a basis for developing predictive preclinical models for biopharmaceutical applications.


Assuntos
Adenocarcinoma de Pulmão/patologia , Técnicas de Cultura de Células , Engenharia Celular , Células Endoteliais/citologia , Fibroblastos/citologia , Técnicas Analíticas Microfluídicas , Adenocarcinoma de Pulmão/irrigação sanguínea , Humanos , Hidrogéis/química , Microcirculação
5.
J Infect Dis ; 219(12): 1858-1866, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30929010

RESUMO

Despite intensive research efforts, several fundamental disease processes for tuberculosis (TB) remain poorly understood. A central enigma is that host immunity is necessary to control disease yet promotes transmission by causing lung immunopathology. Our inability to distinguish these processes makes it challenging to design rational novel interventions. Elucidating basic immune mechanisms likely requires both in vivo and in vitro analyses, since Mycobacterium tuberculosis is a highly specialized human pathogen. The classic immune response is the TB granuloma organized in three dimensions within extracellular matrix. Several groups are developing cell culture granuloma models. In January 2018, NIAID convened a workshop, entitled "3-D Human in vitro TB Granuloma Model" to advance the field. Here, we summarize the arguments for developing advanced TB cell culture models and critically review those currently available. We discuss how integrating complementary approaches, specifically organoids and mathematical modeling, can maximize progress, and conclude by discussing future challenges and opportunities.


Assuntos
Granuloma/imunologia , Tuberculose/imunologia , Animais , Granuloma/microbiologia , Humanos , Modelos Teóricos , Mycobacterium tuberculosis/imunologia , Organoides/imunologia , Organoides/microbiologia , Tuberculose/microbiologia
6.
Sci Rep ; 7(1): 3413, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611413

RESUMO

Red blood cell (RBC) transfusion poses significant risks to critically ill patients by increasing their susceptibility to acute respiratory distress syndrome. While the underlying mechanisms of this life-threatening syndrome remain elusive, studies suggest that RBC-induced microvascular injury in the distal lung plays a central role in the development of lung injury following blood transfusion. Here we present a novel microengineering strategy to model and investigate this key disease process. Specifically, we created a microdevice for culturing primary human lung endothelial cells under physiological flow conditions to recapitulate the morphology and hemodynamic environment of the pulmonary microvascular endothelium in vivo. Perfusion of the microengineered vessel with human RBCs resulted in abnormal cytoskeletal rearrangement and release of intracellular molecules associated with regulated necrotic cell death, replicating the characteristics of acute endothelial injury in transfused lungs in vivo. Our data also revealed the significant effect of hemodynamic shear stress on RBC-induced microvascular injury. Furthermore, we integrated the microfluidic endothelium with a computer-controlled mechanical stretching system to show that breathing-induced physiological deformation of the pulmonary microvasculature may exacerbate vascular injury during RBC transfusion. Our biomimetic microsystem provides an enabling platform to mechanistically study transfusion-associated pulmonary vascular complications in susceptible patient populations.


Assuntos
Endotélio Vascular/citologia , Transfusão de Eritrócitos/efeitos adversos , Lesão Pulmonar/etiologia , Microfluídica/métodos , Estresse Mecânico , Células Cultivadas , Endotélio Vascular/lesões , Hemodinâmica , Humanos , Lesão Pulmonar/patologia , Circulação Pulmonar
7.
Lab Chip ; 15(16): 3350-7, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26158500

RESUMO

A mounting body of evidence in cancer research suggests that the local microenvironment of tumor cells has a profound influence on cancer progression and metastasis. In vitro studies on the tumor microenvironment and its pharmacological modulation, however, are often hampered by the technical challenges associated with creating physiological cell culture environments that integrate cancer cells with the key components of their native niche such as neighboring cells and extracellular matrix (ECM) to mimic complex microarchitecture of cancerous tissue. Using early-stage breast cancer as a model disease, here we describe a biomimetic microengineering strategy to reconstitute three-dimensional (3D) structural organization and microenvironment of breast tumors in human cell-based in vitro models. Specifically, we developed a microsystem that enabled co-culture of breast tumor spheroids with human mammary ductal epithelial cells and mammary fibroblasts in a compartmentalized 3D microfluidic device to replicate microarchitecture of breast ductal carcinoma in situ (DCIS). We also explored the potential of this breast cancer-on-a-chip system as a drug screening platform by evaluating the efficacy and toxicity of an anticancer drug (paclitaxel). Our microengineered disease model represents the first critical step towards recapitulating pathophysiological complexity of breast cancer, and may serve as an enabling tool to systematically examine the contribution of the breast cancer microenvironment to the progression of DCIS to an invasive form of the disease.


Assuntos
Neoplasias da Mama/fisiopatologia , Carcinoma/fisiopatologia , Técnicas Analíticas Microfluídicas/métodos , Modelos Biológicos , Antineoplásicos Fitogênicos/toxicidade , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Matriz Extracelular/metabolismo , Feminino , Genes Reporter , Humanos , Glândulas Mamárias Humanas/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Paclitaxel/toxicidade , Microambiente Tumoral
8.
Sci Transl Med ; 4(159): 159ra147, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136042

RESUMO

Preclinical drug development studies currently rely on costly and time-consuming animal testing because existing cell culture models fail to recapitulate complex, organ-level disease processes in humans. We provide the proof of principle for using a biomimetic microdevice that reconstitutes organ-level lung functions to create a human disease model-on-a-chip that mimics pulmonary edema. The microfluidic device, which reconstitutes the alveolar-capillary interface of the human lung, consists of channels lined by closely apposed layers of human pulmonary epithelial and endothelial cells that experience air and fluid flow, as well as cyclic mechanical strain to mimic normal breathing motions. This device was used to reproduce drug toxicity-induced pulmonary edema observed in human cancer patients treated with interleukin-2 (IL-2) at similar doses and over the same time frame. Studies using this on-chip disease model revealed that mechanical forces associated with physiological breathing motions play a crucial role in the development of increased vascular leakage that leads to pulmonary edema, and that circulating immune cells are not required for the development of this disease. These studies also led to identification of potential new therapeutics, including angiopoietin-1 (Ang-1) and a new transient receptor potential vanilloid 4 (TRPV4) ion channel inhibitor (GSK2193874), which might prevent this life-threatening toxicity of IL-2 in the future.


Assuntos
Interleucina-2/efeitos adversos , Pulmão/patologia , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Edema Pulmonar/induzido quimicamente , Animais , Transporte Biológico/efeitos dos fármacos , Barreira Alveolocapilar/efeitos dos fármacos , Barreira Alveolocapilar/patologia , Capilares/efeitos dos fármacos , Capilares/patologia , Progressão da Doença , Gases/metabolismo , Humanos , Técnicas In Vitro , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Lab Chip ; 12(12): 2165-74, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22434367

RESUMO

Development of an in vitro living cell-based model of the intestine that mimics the mechanical, structural, absorptive, transport and pathophysiological properties of the human gut along with its crucial microbial symbionts could accelerate pharmaceutical development, and potentially replace animal testing. Here, we describe a biomimetic 'human gut-on-a-chip' microdevice composed of two microfluidic channels separated by a porous flexible membrane coated with extracellular matrix (ECM) and lined by human intestinal epithelial (Caco-2) cells that mimics the complex structure and physiology of living intestine. The gut microenvironment is recreated by flowing fluid at a low rate (30 µL h(-1)) producing low shear stress (0.02 dyne cm(-2)) over the microchannels, and by exerting cyclic strain (10%; 0.15 Hz) that mimics physiological peristaltic motions. Under these conditions, a columnar epithelium develops that polarizes rapidly, spontaneously grows into folds that recapitulate the structure of intestinal villi, and forms a high integrity barrier to small molecules that better mimics whole intestine than cells in cultured in static Transwell models. In addition, a normal intestinal microbe (Lactobacillus rhamnosus GG) can be successfully co-cultured for extended periods (>1 week) on the luminal surface of the cultured epithelium without compromising epithelial cell viability, and this actually improves barrier function as previously observed in humans. Thus, this gut-on-a-chip recapitulates multiple dynamic physical and functional features of human intestine that are critical for its function within a controlled microfluidic environment that is amenable for transport, absorption, and toxicity studies, and hence it should have great value for drug testing as well as development of novel intestinal disease models.


Assuntos
Engenharia Tecidual , Aminopeptidases/metabolismo , Materiais Biomiméticos/química , Células CACO-2 , Dimetilpolisiloxanos/química , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Células Epiteliais/microbiologia , Humanos , Intestinos/microbiologia , Lacticaseibacillus rhamnosus/enzimologia , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Metagenoma , Modelos Biológicos , beta-Galactosidase/metabolismo
10.
Nature ; 457(7233): 1103-8, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19242469

RESUMO

Angiogenesis is controlled by physical interactions between cells and extracellular matrix as well as soluble angiogenic factors, such as VEGF. However, the mechanism by which mechanical signals integrate with other microenvironmental cues to regulate neovascularization remains unknown. Here we show that the Rho inhibitor, p190RhoGAP (also known as GRLF1), controls capillary network formation in vitro in human microvascular endothelial cells and retinal angiogenesis in vivo by modulating the balance of activities between two antagonistic transcription factors, TFII-I (also known as GTF2I) and GATA2, that govern gene expression of the VEGF receptor VEGFR2 (also known as KDR). Moreover, this new angiogenesis signalling pathway is sensitive to extracellular matrix elasticity as well as soluble VEGF. This is, to our knowledge, the first known functional cross-antagonism between transcription factors that controls tissue morphogenesis, and that responds to both mechanical and chemical cues.


Assuntos
Neovascularização Fisiológica/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Animais Recém-Nascidos , Linhagem Celular , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Fator de Transcrição GATA2/metabolismo , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/metabolismo , Transdução de Sinais , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição TFII/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Biomaterials ; 29(17): 2646-55, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18342367

RESUMO

Cell culture systems are often static and are therefore nonphysiological. In vivo, many cells are exposed to dynamic surroundings that stimulate cellular responses in a process known as mechanotransduction. To recreate this environment, stretchable cell culture substrate systems have been developed, however, these systems are limited by being macroscopic and low throughput. We have developed a device consisting of 24 miniature cell stretching chambers with flexible bottom membranes that are deformed using the computer-controlled, piezoelectrically actuated pins of a Braille display. We have also developed efficient image capture and analysis protocols to quantify morphological responses of the cells to applied strain. Human dermal microvascular endothelial cells (HDMECs) were found to show increasing degrees of alignment and elongation perpendicular to the radial strain in response to cyclic stretch at increasing frequencies of 0.2, 1, and 5 Hz, after 2, 4, and 12h. Mouse myogenic C2C12 cells were also found to align in response to the stretch, while A549 human lung adenocarcinoma epithelial cells did not respond to stretch.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células Endoteliais/citologia , Células Epiteliais/citologia , Mecanotransdução Celular , Mioblastos/citologia , Adenocarcinoma/patologia , Animais , Fenômenos Biomecânicos , Linhagem Celular , Linhagem Celular Tumoral , Simulação por Computador , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Células Epiteliais/metabolismo , Análise de Elementos Finitos , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Mioblastos/metabolismo , Pele/citologia , Especificidade por Substrato
12.
Proc Natl Acad Sci U S A ; 104(48): 18886-91, 2007 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18006663

RESUMO

We describe a microfabricated airway system integrated with computerized air-liquid two-phase microfluidics that enables on-chip engineering of human airway epithelia and precise reproduction of physiologic or pathologic liquid plug flows found in the respiratory system. Using this device, we demonstrate cellular-level lung injury under flow conditions that cause symptoms characteristic of a wide range of pulmonary diseases. Specifically, propagation and rupture of liquid plugs that simulate surfactant-deficient reopening of closed airways lead to significant injury of small airway epithelial cells by generating deleterious fluid mechanical stresses. We also show that the explosive pressure waves produced by plug rupture enable detection of the mechanical cellular injury as crackling sounds.


Assuntos
Epitélio/lesões , Pneumopatias/etiologia , Microfluídica , Estresse Mecânico , Acústica/instrumentação , Ar , Membrana Basal/fisiologia , Diferenciação Celular , Divisão Celular , Sobrevivência Celular , Células Cultivadas/fisiologia , Células Epiteliais/fisiologia , Epitélio/fisiopatologia , Desenho de Equipamento , Humanos , Pneumopatias/fisiopatologia , Técnicas Analíticas Microfluídicas , Perfusão , Surfactantes Pulmonares , Resistência ao Cisalhamento , Engenharia Tecidual/instrumentação
13.
Anal Chem ; 79(4): 1369-76, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17297936

RESUMO

This paper describes a simple microfluidic sorting system that can perform size profiling and continuous mass-dependent separation of particles through combined use of gravity (1 g) and hydrodynamic flows capable of rapidly amplifying sedimentation-based separation between particles. Operation of the device relies on two microfluidic transport processes: (i) initial hydrodynamic focusing of particles in a microchannel oriented parallel to gravity and (ii) subsequent sample separation where positional difference between particles with different mass generated by sedimentation is further amplified by hydrodynamic flows whose streamlines gradually widen out due to the geometry of a widening microchannel oriented perpendicular to gravity. The microfluidic sorting device was fabricated in poly(dimethylsiloxane), and hydrodynamic flows in microchannels were driven by gravity without using external pumps. We conducted theoretical and experimental studies on fluid dynamic characteristics of laminar flows in widening microchannels and hydrodynamic amplification of particle separation. Direct trajectory monitoring, collection, and post-analysis of separated particles were performed using polystyrene microbeads with different sizes to demonstrate rapid (<1 min) and high-purity (>99.9%) separation. Finally, we demonstrated biomedical applications of our system by isolating small-sized (diameter <6 microm) perfluorocarbon liquid droplets from polydisperse droplet emulsions, which is crucial in preparing contrast agents for safe, reliable ultrasound medical imaging, tracers for magnetic resonance imaging, or transpulmonary droplets used in ultrasound-based occlusion therapy for cancer treatment. Our method enables straightforward, rapid, real-time size monitoring and continuous separation of particles in simple stand-alone microfabricated devices without the need for bulky and complex external power sources. We believe that this system will provide a useful tool to separate colloids and particles for various analytical and preparative applications and may hold potential for separation of cells or development of diagnostic tools requiring point-of-care sample preparation or testing.


Assuntos
Gravitação , Microfluídica/instrumentação , Microfluídica/métodos , Dimetilpolisiloxanos/química , Tamanho da Partícula , Silicones/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA