Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cancer Policy ; 41: 100486, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830535

RESUMO

During the COVID-19 pandemic, countries adopted mitigation strategies to reduce disruptions to cancer services. We reviewed their implementation across health system functions and their impact on cancer diagnosis and care during the pandemic. A systematic search was performed using terms related to cancer and COVID-19. Included studies reported on individuals with cancer or cancer care services, focusing on strategies/programs aimed to reduce delays and disruptions. Extracted data were grouped into four functions (governance, financing, service delivery, and resource generation) and sub-functions of the health system performance assessment framework. We included 30 studies from 16 countries involving 192,233 patients with cancer. Multiple mitigation approaches were implemented, predominantly affecting sub-functions of service delivery to control COVID-19 infection via the suspension of non-urgent cancer care, modified treatment guidelines, and increased telemedicine use in routine cancer care delivery. Resource generation was mainly ensured through adequate workforce supply. However, less emphasis on monitoring or assessing the effectiveness and financing of these strategies was observed. Seventeen studies suggested improved service uptake after mitigation implementation, yet the resulting impact on cancer diagnosis and care has not been established. This review emphasizes the importance of developing effective mitigation strategies across all health system (sub)functions to minimize cancer care service disruptions during crises. Deficiencies were observed in health service delivery (to ensure equity), governance (to monitor and evaluate the implementation of mitigation strategies), and financing. In the wake of future emergencies, implementation research studies that include pre-prepared protocols will be essential to assess mitigation impact across cancer care services.

2.
PLoS One ; 19(4): e0296945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557758

RESUMO

COVID-19 disrupted cancer control worldwide, impacting preventative screening, diagnoses, and treatment services. This modelling study estimates the impact of disruptions on colorectal cancer cases and deaths in Canada and Australia, informed by data on screening, diagnosis, and treatment procedures. Modelling was used to estimate short- and long-term effects on colorectal cancer incidence and mortality, including ongoing impact of patient backlogs. A hypothetical mitigation strategy was simulated, with diagnostic and treatment capacities increased by 5% from 2022 to address backlogs. Colorectal cancer screening dropped by 40% in Canada and 6.3% in Australia in 2020. Significant decreases to diagnostic and treatment procedures were also observed in Australia and Canada, which were estimated to lead to additional patient wait times. These changes would lead to an estimated increase of 255 colorectal cancer cases and 1,820 colorectal cancer deaths in Canada and 234 cases and 1,186 deaths in Australia over 2020-2030; a 1.9% and 2.4% increase in mortality, respectively, vs a scenario with no screening disruption or diagnostic/treatment delays. Diagnostic and treatment capacity mitigation would avert 789 and 350 deaths in Canada and Australia, respectively. COVID-related disruptions had a significant impact on colorectal cancer screening, diagnostic, and treatment procedures in Canada and Australia. Modelling demonstrates that downstream effects on disease burden could be substantial. However, backlogs can be managed and deaths averted with even small increases to diagnostic and treatment capacity. Careful management of resources can improve patient outcomes after any temporary disruption, and these results can inform targeted approaches early detection of cancers.


Assuntos
COVID-19 , Neoplasias Colorretais , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Detecção Precoce de Câncer , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/terapia , Austrália/epidemiologia , Canadá/epidemiologia , Teste para COVID-19
3.
Int J Cancer ; 154(8): 1394-1412, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38083979

RESUMO

While previous reviews found a positive association between pre-existing cancer diagnosis and COVID-19-related death, most early studies did not distinguish long-term cancer survivors from those recently diagnosed/treated, nor adjust for important confounders including age. We aimed to consolidate higher-quality evidence on risk of COVID-19-related death for people with recent/active cancer (compared to people without) in the pre-COVID-19-vaccination period. We searched the WHO COVID-19 Global Research Database (20 December 2021), and Medline and Embase (10 May 2023). We included studies adjusting for age and sex, and providing details of cancer status. Risk-of-bias assessment was based on the Newcastle-Ottawa Scale. Pooled adjusted odds or risk ratios (aORs, aRRs) or hazard ratios (aHRs) and 95% confidence intervals (95% CIs) were calculated using generic inverse-variance random-effects models. Random-effects meta-regressions were used to assess associations between effect estimates and time since cancer diagnosis/treatment. Of 23 773 unique title/abstract records, 39 studies were eligible for inclusion (2 low, 17 moderate, 20 high risk of bias). Risk of COVID-19-related death was higher for people with active or recently diagnosed/treated cancer (general population: aOR = 1.48, 95% CI: 1.36-1.61, I2 = 0; people with COVID-19: aOR = 1.58, 95% CI: 1.41-1.77, I2 = 0.58; inpatients with COVID-19: aOR = 1.66, 95% CI: 1.34-2.06, I2 = 0.98). Risks were more elevated for lung (general population: aOR = 3.4, 95% CI: 2.4-4.7) and hematological cancers (general population: aOR = 2.13, 95% CI: 1.68-2.68, I2 = 0.43), and for metastatic cancers. Meta-regression suggested risk of COVID-19-related death decreased with time since diagnosis/treatment, for example, for any/solid cancers, fitted aOR = 1.55 (95% CI: 1.37-1.75) at 1 year and aOR = 0.98 (95% CI: 0.80-1.20) at 5 years post-cancer diagnosis/treatment. In conclusion, before COVID-19-vaccination, risk of COVID-19-related death was higher for people with recent cancer, with risk depending on cancer type and time since diagnosis/treatment.


Assuntos
COVID-19 , Neoplasias , Humanos , COVID-19/epidemiologia , Teste para COVID-19 , Neoplasias/diagnóstico , Neoplasias/epidemiologia
4.
J Cancer Policy ; 33: 100340, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680113

RESUMO

BACKGROUND: Early reports suggested that COVID-19 patients with cancer were at higher risk of COVID-19-related death. We conducted a systematic review with risk of bias assessment and synthesis of the early evidence on the risk of COVID-19-related death for COVID-19 patients with and without cancer. METHODS AND FINDINGS: We searched Medline/Embase/BioRxiv/MedRxiv/SSRN databases to 1 July 2020. We included cohort or case-control studies published in English that reported on the risk of dying after developing COVID-19 for people with a pre-existing diagnosis of any cancer, lung cancer, or haematological cancers. We assessed risk of bias using tools adapted from the Newcastle-Ottawa Scale. We used the generic inverse-variance random-effects method for meta-analysis. Pooled odds ratios (ORs) and hazard ratios (HRs) were calculated separately. Of 96 included studies, 54 had sufficient non-overlapping data to be included in meta-analyses (>500,000 people with COVID-19, >8000 with cancer; 52 studies of any cancer, three of lung and six of haematological cancers). All studies had high risk of bias. Accounting for at least age consistently led to lower estimated ORs and HRs for COVID-19-related death in cancer patients (e.g. any cancer versus no cancer; six studies, unadjusted OR=3.30,95%CI:2.59-4.20, adjusted OR=1.37,95%CI:1.16-1.61). Adjusted effect estimates were not reported for people with lung or haematological cancers. Of 18 studies that adjusted for at least age, 17 reported positive associations between pre-existing cancer diagnosis and COVID-19-related death (e.g. any cancer versus no cancer; nine studies, adjusted OR=1.66,95%CI:1.33-2.08; five studies, adjusted HR=1.19,95%CI:1.02-1.38). CONCLUSIONS: The initial evidence (published to 1 July 2020) on COVID-19-related death in people with cancer is characterised by multiple sources of bias and substantial overlap between data included in different studies. Pooled analyses of non-overlapping early data with adjustment for at least age indicated a significantly increased risk of COVID-19-related death for those with a pre-existing cancer diagnosis.


Assuntos
COVID-19 , Neoplasias Hematológicas , Neoplasias , Adolescente , COVID-19/epidemiologia , Estudos de Coortes , Neoplasias Hematológicas/epidemiologia , Humanos , Pulmão , Neoplasias/epidemiologia
5.
J Cancer Policy ; 33: 100338, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35671919

RESUMO

BACKGROUND: The early COVID-19 literature suggested that people with cancer may be more likely to be infected with SARS-CoV-2 or develop COVID-19 than people without cancer, due to increased health services contact and/or immunocompromise. While some studies were criticised due to small patient numbers and methodological limitations, they created or reinforced concerns of clinicians and people with cancer. These risks are also important in COVID-19 vaccine prioritisation decisions. We performed a systematic review to critically assess and summarise the early literature. METHODS AND FINDINGS: We conducted a systematic search of Medline/Embase/BioRxiv/MedRxiv/SSRN databases including peer-reviewed journal articles, letters/commentaries, and non-peer-reviewed pre-print articles for 1 January-1 July 2020. The primary endpoints were diagnosis of COVID-19 and positive SARS-CoV-2 test. We assessed risk of bias using a tool adapted from the Newcastle-Ottawa Scale. Twelve studies were included in the quantitative synthesis. All four studies of COVID-19 incidence (including 24,181,727 individuals, 125,649 with pre-existing cancer) reported that people with cancer had higher COVID-19 incidence rates. Eight studies reported SARS-CoV-2 test positivity for > 472,000 individuals, 48,370 with pre-existing cancer. Seven of these studies comparing people with any and without cancer, were pooled using random effects [pooled odds ratio 0.91, 95 %CI: 0.57-1.47; unadjusted for age, sex, or comorbidities]. Two studies suggested people with active or haematological cancer had lower risk of a positive test. All 12 studies had high risk of bias; none included universal or random COVID-19/SARS-CoV-2 testing. CONCLUSIONS: The early literature on susceptibility to SARS-CoV-2/COVID-19 for people with cancer is characterised by pervasive biases and limited data. To provide high-quality evidence to inform decision-making, studies of risk of SARS-CoV-2/COVID-19 for people with cancer should control for other potential modifiers of infection risk, including age, sex, comorbidities, exposure to the virus, protective measures taken, and vaccination, in addition to stratifying analyses by cancer type, stage at diagnosis, and treatment received.


Assuntos
COVID-19 , Neoplasias , COVID-19/epidemiologia , Teste para COVID-19 , Vacinas contra COVID-19 , Humanos , Neoplasias/epidemiologia , SARS-CoV-2
6.
BMJ Open ; 10(6): e036475, 2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32565470

RESUMO

INTRODUCTION: With almost 50% of cases preventable and the Australian National Bowel Cancer Screening Program in place, colorectal cancer (CRC) is a prime candidate for investment to reduce the cancer burden. The challenge is determining effective ways to reduce morbidity and mortality and their implementation through policy and practice. Pathways-Bowel is a multistage programme that aims to identify best-value investment in CRC control by integrating expert and end-user engagement; relevant evidence; modelled interventions to guide future investment; and policy-driven implementation of interventions using evidence-based methods. METHODS AND ANALYSIS: Pathways-Bowel is an iterative work programme incorporating a calibrated and validated CRC natural history model for Australia (Policy1-Bowel) and assessing the health and cost outcomes and resource use of targeted interventions. Experts help identify and prioritise modelled evaluations of changing trends and interventions and critically assess results to advise on their real-world applicability. Where appropriate the results are used to support public policy change and make the case for optimal investment in specific CRC control interventions. Fourteen high-priority evaluations have been modelled or planned, including evaluations of CRC outcomes from the changing prevalence of modifiable exposures, including smoking and body fatness; potential benefits of daily aspirin intake as chemoprevention; increasing CRC incidence in people aged <50 years; increasing screening participation in the general and Aboriginal and Torres Strait Islander populations; alternative screening technologies and modalities; and changes to follow-up surveillance protocols. Pathways-Bowel is a unique, comprehensive approach to evaluating CRC control; no prior body of work has assessed the relative benefits of a variety of interventions across CRC development and progression to produce a list of best-value investments. ETHICS AND DISSEMINATION: Ethics approval was not required as human participants were not involved. Findings are reported in a series of papers in peer-reviewed journals and presented at fora to engage the community and policymakers.


Assuntos
Neoplasias Colorretais/prevenção & controle , Modelos Teóricos , Algoritmos , Austrália , Erradicação de Doenças , Detecção Precoce de Câncer , Comportamentos Relacionados com a Saúde , Promoção da Saúde , Humanos , Prevenção Primária
7.
Gynecol Oncol ; 152(3): 465-471, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30876490

RESUMO

OBJECTIVE: Australia's HPV vaccination and HPV-based cervical screening programs are changing the landscape in cervical cancer prevention. We aim to identify areas which can make the biggest further impact on cervical cancer burden. This protocol describes the first stage of a program of work called Pathways-Cervix that aims to generate evidence from modelled evaluations of interventions across the cervical cancer spectrum. METHODS: Based on evidence from literature reviews and guidance from a multi-disciplinary Scientific Advisory Committee (SAC), the most relevant evaluations for prevention, diagnosis and treatment were identified. RESULTS: Priority evaluations agreed by the SAC included: increasing/decreasing and retaining vaccination uptake at the current level; vaccinating older women; increasing screening participation; methods for triaging HPV-positive women; improving the diagnosis of cervical intraepithelial neoplasia (CIN) and cancer; treating cervical abnormalities and cancer; and vaccinating women treated for CIN2/3 to prevent recurrence. Evaluations will be performed using a simulation model, Policy1-Cervix previously used to perform policy evaluations in Australia. Exploratory modelling of interventions using idealised scenarios will initially be conducted in single birth cohorts. If these have a significant impact on findings then evaluations with more realistic assumptions will be conducted. Promising strategies will be investigated further by multi-cohort simulations predicting health outcomes, resource use and cost outcomes. CONCLUSIONS: Pathways-Cervix will assess the relative benefits of strategies and treatment options in a systematic and health economic framework, producing a list of 'best buys' for future decision-making in cervical cancer control.


Assuntos
Erradicação de Doenças/métodos , Modelos Teóricos , Neoplasias do Colo do Útero/prevenção & controle , Adolescente , Adulto , Austrália , Erradicação de Doenças/normas , Detecção Precoce de Câncer , Feminino , Política de Saúde , Humanos , Modelos Biológicos , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/transmissão , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/administração & dosagem , Neoplasias do Colo do Útero/virologia , Adulto Jovem , Displasia do Colo do Útero/prevenção & controle , Displasia do Colo do Útero/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA