Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Clin Chim Acta ; 539: 170-174, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36529270

RESUMO

BACKGROUND AND AIMS: Cerebrotendinous Xanthomatosis (CTX) is a treatable disorder of bile acid synthesis caused by deficiency of 27-sterol hydroxylase -encoded by CYP27A1- leading to gastrointestinal and progressive neuropsychiatric symptoms. Biochemically, CTX is characterized by accumulation of the bile alcohol cholestanetetrol glucuronide (GlcA-tetrol) and the deficiency of tauro-chenodeoxycholic acid (t-CDCA) and tauro-trihydroxycholestanoic acid (t-THCA). MATERIALS AND METHODS: To ascertain the feasibility of CTX newborn screening (NBS) we performed a study with deidentified Dutch dried blood spots using reagents and equipment that is frequently used in NBS laboratories. 20,076 deidentified newborn blood spots were subjected to flow-injection (FIA)-MS/MS and UPLC-MS/MS analysis to determine the concentration of GlcA-tetrol and calculate the GlcA-tetrol/t-CDCA and t-THCA/GlcA-tetrol ratios. RESULTS: Using UPLC-MS/MS analysis both GlcA-tetrol concentration and/or metabolite ratios GlcA-tetrol/t-CDCA proved to be informative biomarkers; newborn DBS results did not overlap with those of the CTX patients. For FIA-MS/MS, GlcA-tetrol also was an excellent marker but when using the combination of the GlcA-tetrol/t-CDCA and t-THCA/GlcA-tetrol ratios also did not yield any screen positives. CONCLUSION: Newborn screening for CTX using only metabolite ratios following the measurement of three CTX biomarkers is possible using either FIA-MS/MS or UPLC-MS/MS, which paves the way for introduction of CTX NBS.


Assuntos
Xantomatose Cerebrotendinosa , Humanos , Recém-Nascido , Xantomatose Cerebrotendinosa/diagnóstico , Xantomatose Cerebrotendinosa/metabolismo , Espectrometria de Massas em Tandem , Estudos Retrospectivos , Triagem Neonatal/métodos , Cromatografia Líquida , Ácido Quenodesoxicólico
2.
J Inherit Metab Dis ; 45(6): 1094-1105, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053831

RESUMO

Classical galactosemia (CG) is one of the more frequent inborn errors of metabolism affecting approximately 1:40.000 people. Despite a life-saving galactose-restricted diet, patients develop highly variable long-term complications including intellectual disability and movement disorders. The pathophysiology of these complications is still poorly understood and development of new therapies is hampered by a lack of valid prognostic biomarkers. Multi-omics approaches may discover new biomarkers and improve prediction of patient outcome. In the current study, (semi-)targeted mass-spectrometry based metabolomics and lipidomics were performed in erythrocytes of 40 patients with both classical and variant phenotypes and 39 controls. Lipidomics did not show any significant changes or deficiencies. The metabolomics analysis revealed that CG does not only compromise the Leloir pathway, but also involves other metabolic pathways including glycolysis, the pentose phosphate pathway, and nucleotide metabolism in the erythrocyte. Moreover, the energy status of the cell appears to be compromised, with significantly decreased levels of ATP and ADP. This possibly is the consequence of two different mechanisms: impaired formation of ATP from ADP possibly due to reduced flux though the glycolytic pathway and trapping of phosphate in galactose-1-phosphate (Gal-1P) which accumulates in CG. Our findings are in line with the current notion that the accumulation of Gal-1P plays a key role in the pathophysiology of CG not only by depletion of intracellular phosphate levels but also by decreasing metabolite abundance downstream in the glycolytic pathway and affecting other pathways. New therapeutic options for CG could be directed towards the restoration of intracellular phosphate homeostasis.


Assuntos
Galactosemias , Humanos , Galactosemias/genética , Galactose/metabolismo , Redes e Vias Metabólicas , Biomarcadores/metabolismo , Fosfatos , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
4.
Genet Med ; 22(10): 1606-1612, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523054

RESUMO

PURPOSE: Cerebrotendinous xanthomatosis (CTX) is a treatable hereditary disorder caused by the deficiency of sterol 27-hydroxylase, which is encoded by the CYP27A1 gene. Different newborn screening biomarkers for CTX have been described, including 7α,12α-dihydroxy-4-cholesten-3-one (7α12αC4), 5ß-cholestane-3α,7α,12α,25-tetrol glucuronide (GlcA-tetrol), the ratio of GlcA-tetrol to tauro-chenodeoxycholic acid (t-CDCA) (GlcA-tetrol/t-CDCA), and the ratio of tauro-trihydroxycholestanoic acid (t-THCA) to GlcA-tetrol (t-THCA/GlcA-tetrol). We set out to evaluate these screening methods in a research study using over 32,000 newborn dried blood spots (DBS). METHODS: Metabolites were extracted from DBS with methanol containing internal standard, which was then quantified by ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). RESULTS: The measurement of 7α12αC4 was complicated by isobaric interferences and was discontinued. A total of 32,737 newborns were screened based on the GlcA-tetrol concentration in DBS. GlcA-tetrol/t-CDCA and t-THCA/GlcA-tetrol ratios were also calculated. Newborns displaying both elevated GlcA-tetrol and GlcA-tetrol/t-CDCA ratio were considered to be screen positives. The t-THCA/GlcA-tetrol ratio was used to further distinguish CTX screen positives from Zellweger Spectrum Disorder (ZSD) screen positives. Only one newborn displayed both elevated GlcA-tetrol concentration in DBS and a typical CTX biochemical profile. This newborn was interpreted as a CTX-affected patient as CYP27A1 gene sequencing identified two known pathogenic variants. CONCLUSION: The results indicate that both GlcA-tetrol and the GlcA-tetrol/t-CDCA ratio are excellent CTX biomarkers suitable for newborn screening. By characterizing the relationship of GlcA-tetrol, t-CDCA, and t-THCA as secondary markers, 100% assay specificity can be achieved.


Assuntos
Xantomatose Cerebrotendinosa , Biomarcadores , Cromatografia Líquida , Humanos , Recém-Nascido , Triagem Neonatal , Espectrometria de Massas em Tandem , Xantomatose Cerebrotendinosa/diagnóstico , Xantomatose Cerebrotendinosa/genética
5.
Neurology ; 92(2): e83-e95, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30530799

RESUMO

OBJECTIVE: To evaluate the effect of chenodeoxycholic acid treatment on disease progression in cerebrotendinous xanthomatosis (CTX). METHODS: In this retrospective cohort study, we report the clinical long-term follow-up characteristics of 56 Dutch patients with CTX. Age at diagnosis was correlated with clinical characteristics and with the course of modified Rankin Scale (mRS) and Expanded Disability Status Scale (EDSS) scores at follow-up. RESULTS: Median follow-up time was 8 years (6 months-31.5 years). Patients diagnosed and treated before the age of 24 years had a significantly better outcome at follow-up. When considering only patients with a good treatment adherence (n = 43), neurologic symptoms, if present, disappeared in all patients who were diagnosed before the age of 24 and treated since. Furthermore, treatment prevented the development of new neurologic symptoms during follow-up. In contrast, 61% of the patients diagnosed and treated after the age of 24 showed deterioration of the neurologic symptoms, with parkinsonism as a treatment-resistant feature. There was an improvement or stabilization in favor of patients diagnosed and treated before the age of 24 compared to those treated after the age of 24: 100% vs 58% for mRS scores and 100% vs 50% for EDSS scores, respectively. CONCLUSIONS: Treatment start at an early age can reverse and even prevent the development of neurologic symptoms in CTX. This study emphasizes the importance of early diagnosis in CTX and provides a rationale to include CTX in newborn screening programs.


Assuntos
Gerenciamento Clínico , Resultado do Tratamento , Xantomatose Cerebrotendinosa/terapia , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Colestanotriol 26-Mono-Oxigenase/genética , Colestanol/sangue , Estudos de Coortes , Avaliação da Deficiência , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mutação/genética , Doenças do Sistema Nervoso/etiologia , Fatores de Tempo , Xantomatose Cerebrotendinosa/sangue , Xantomatose Cerebrotendinosa/complicações , Xantomatose Cerebrotendinosa/genética , Adulto Jovem
6.
JIMD Rep ; 45: 99-104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30569318

RESUMO

Advancements in genetic testing now allow early identification of previously unresolved neuromuscular phenotypes. To illustrate this, we here present diagnoses of glycogen storage disease IV (GSD IV) in two patients with hypotonia and delayed development of gross motor skills. Patient 1 was diagnosed with congenital myopathy based on a muscle biopsy at the age of 6 years. The genetic cause of his disorder (two compound heterozygous missense mutations in GBE1 (c.[760A>G] p.[Thr254Ala] and c.[1063C>T] p.[Arg355Cys])), however, was only identified at the age of 17, after panel sequencing of 314 genes associated with neuromuscular disorders. Thanks to the availability of next-generation sequencing, patient 2 was diagnosed before the age of 2 with two compound heterozygous mutations in GBE1 (c.[691+2T>C] (splice donor variant) and the same c.[760A>G] p.[Thr254Ala] mutation as patient 1). GSD IV is an autosomal recessive metabolic disorder with a broad and expanding clinical spectrum, which hampers targeted diagnostics. The current cases illustrate the value of novel genetic testing for rare genetic disorders with neuromuscular phenotypes, especially in case of clinical heterogeneity. We argue that genetic testing by gene panels or whole exome sequencing should be considered early in the diagnostic procedure of unresolved neuromuscular disorders.

7.
J Inherit Metab Dis ; 41(4): 641-646, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28894950

RESUMO

BACKGROUND: Cerebrotendinous xanthomatosis (CTX) is an autosomal recessively inherited inborn error of metabolism (IEM) due to mutations in the CYP27A1 gene. The clinical picture ranges from being nearly asymptomatic in early childhood, up to severe disability at adult age. Infantile-onset diarrhea and juvenile-onset cataract are the earliest symptoms in childhood. In the current study, we evaluated the presence of autism spectrum disorder (ASD) in a large cohort of CTX patients. METHODS: We performed a retrospective patient file study in 77 genetically confirmed Dutch CTX patients to determine the frequency of ASD. In addition, we compared plasma cholestanol levels in CTX patients with and without a diagnosis of ASD and tried to establish a relation between CYP27A1 genotype and ASD. RESULTS: In our CTX cohort, 10 patients (13%; nine pediatric and one adult) with ASD were identified. At the time of diagnosis of ASD, most patients only exhibited symptoms of diarrhea and/or intellectual disability without signs of cataract or neurological symptoms. No correlation was found between the presence of ASD and the level of cholestanol or CYP27A1 genotype. The behavioral problems stabilized or improved after treatment initiation with chenodeoxycholic acid (CDCA) in all pediatric patients. CONCLUSIONS: We conclude that ASD is an early and probably underestimated frequent feature in CTX. Metabolic screening for CTX should be performed in patients with ASD when accompanied by diarrhea, intellectual disability, juvenile cataract, and/or neurological involvement. Early recognition allows for earlier initiation of specific treatment and will improve clinical outcome. Our results add CTX to the list of treatable IEMs associated with ASD.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Xantomatose Cerebrotendinosa/diagnóstico , Adolescente , Adulto , Transtorno do Espectro Autista/sangue , Catarata/etiologia , Ácido Quenodesoxicólico/uso terapêutico , Criança , Pré-Escolar , Colestanol/sangue , Diarreia/etiologia , Feminino , Humanos , Deficiência Intelectual/etiologia , Masculino , Estudos Retrospectivos , Xantomatose Cerebrotendinosa/sangue , Xantomatose Cerebrotendinosa/tratamento farmacológico , Adulto Jovem
8.
Dig Dis ; 35(3): 259-260, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249272

RESUMO

We present the first patient with a defect in the Na+-taurocholate cotransporting polypeptide SLC10A1 (NTCP), which plays a key role in the enterohepatic circulation of bile salts. The clinical presentation of the child was mild and the child showed no signs of liver dysfunction or pruritus despite extremely elevated plasma bile salt levels (>100-fold upper-limit of normal). A homozygous point mutation was found in the SLC10A1 gene (resulting in amino acid change R252H) and functional studies confirmed the pathogenicity of the mutation. This confirms the role of NTCP as the major transporter of conjugated bile salts into the liver as part of the enterohepatic circulation and shows that other transporters partly can take over its function, resulting in a relatively mild phenotype. This work was published previously in [Vaz et al.: Hepatology 2015;61:260-267] and supplemented with some follow-up information of the patient.


Assuntos
Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/deficiência , Simportadores/deficiência , Ácido Quenodesoxicólico/metabolismo , Pré-Escolar , Feminino , Seguimentos , Humanos , Erros Inatos do Metabolismo/diagnóstico , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Fenótipo , Simportadores/metabolismo , Fatores de Tempo
9.
J Lipid Res ; 58(5): 1002-1007, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28314860

RESUMO

Cerebrotendinous xanthomatosis (CTX) is a treatable neurodegenerative metabolic disorder of bile acid synthesis in which symptoms can be prevented if treatment with chenodeoxycholic acid supplementation is initiated early in life, making CTX an excellent candidate for newborn screening. We developed a new dried blood spot (DBS) screening assay for this disorder on the basis of different ratios between the accumulating cholestanetetrol glucuronide (tetrol) and specific bile acids/bile acid intermediates, without the need for derivatization. A quarter-inch DBS punch was extracted with methanol, internal standards were added, and after concentration the extract was injected into the tandem mass spectrometer using a 2 min flow injection analysis for which specific transitions were measured for cholestanetetrol glucuronide, taurochenodeoxycholic acid (t-CDCA), and taurotrihydroxycholestanoic acid (t-THCA). A proof-of-principle experiment was performed using 217 Guthrie cards from healthy term/preterm newborns, CTX patients, and Zellweger patients. Using two calculated biomarkers, tetrol:t-CDCA and t-THCA:tetrol, this straightforward method achieved an excellent separation between DBSs of CTX patients and those of controls, Zellweger patients, and newborns with cholestasis. The results of this small pilot study indicate that the tetrol:t-CDCA ratio is an excellent derived biomarker for CTX that has the potential to be used in neonatal screening programs.


Assuntos
Ácidos e Sais Biliares/metabolismo , Teste em Amostras de Sangue Seco/métodos , Glucuronídeos/metabolismo , Triagem Neonatal/métodos , Xantomatose Cerebrotendinosa/sangue , Xantomatose Cerebrotendinosa/diagnóstico , Adolescente , Criança , Pré-Escolar , Colestase/complicações , Feminino , Humanos , Recém-Nascido , Masculino , Xantomatose Cerebrotendinosa/complicações , Xantomatose Cerebrotendinosa/metabolismo
10.
Mol Genet Metab Rep ; 7: 11-5, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27331003

RESUMO

BACKGROUND: Cerebrotendinous xanthomatosis (CTX) is a rare genetic disorder of bile acid synthesis that can cause progressive neurological damage and premature death. Detection of CTX in the newborn period would be beneficial since an effective treatment is available. We previously described a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) test with potential to screen newborn dried bloodspots (DBS) for CTX. We report here modifications to the methodology and application of the modified test to analysis of DBS from a CTX-affected and unaffected newborns. METHODS: The testing methodology utilizes keto derivatization to enable sensitive LC-ESI-MS/MS measurement of elevated 7α,12α-dihydroxy-4-cholesten-3-one (7α12αC4) in CTX newborn DBS. We report here method modifications, including use of a DBS extraction procedure used in newborn screening laboratories and a reduced analysis time of 2 min per sample. RESULTS: Rapid isotope-dilution LC-ESI/MS/MS quantification of the ketosterol bile acid precursor 7α12αC4 provides a test that could readily discriminate a CTX positive newborn DBS sample (with a concentration of 104.4 ng/ml) from unaffected newborn samples (with a mean concentration of 4.1 ± 3.4 ng/ml; range 0.2-15.6 ng/ml, n = 39) analyzed in a blinded manner. CONCLUSIONS: We provide additional evidence suggesting 7α12αC4 may be a promising test marker to screen newborn DBS for CTX. Early detection and intervention through newborn screening would greatly benefit those affected with CTX, preventing morbidity and mortality.

11.
Eur J Pediatr ; 175(1): 143-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26156051

RESUMO

UNLABELLED: We present a two-week old girl who was diagnosed with cerebrotendinous xanthomatosis (CTX), an inborn error of bile acid synthesis, after a diagnostic workup for convulsions which were shown to be caused by a parechovirus encephalitis. The diagnosis of CTX was confirmed with CYP27A1 mutation analysis. She was started on chenodeoxycholic acid (CDCA) supplementation, which inhibits cholestanol production through a feedback mechanism, at the advised dosage of 15 mg/kg/day. Within 6 weeks, she developed jaundice with hepatomegaly. CDCA supplementation was stopped after which liver size and function rapidly normalised. CDCA supplementation was then restarted and maintained at 5 mg/kg/day. Cholestanol, liver enzymes and total bilirubin were frequently monitored in the patient, who is now 2.8 years of age, and have remained within normal range. Her psychomotor development has been normal. CONCLUSION: adequate metabolic control was achieved in an infant with CTX with CDCA supplementation at a dosage of 5 mg/kg/day and was well tolerated. CDCA supplementation at 15 mg/kg/day seems hepatotoxic in infants and should not be used. This is relevant in view of the possible inclusion of CTX in newborn screening programs in the near future. WHAT IS KNOWN: Cerebrotendinous xanthomatosis (CTX), an inborn error of bile acid synthesis, is a progressive neurological disorder. Symptoms of CTX can be halted, and likely prevented, with chenodeoxycholic acid (CDCA) supplementation, making CTX a good candidate for newborn screening. What is New: CDCA supplementation at the advised dosage of 15 mg/kg/day in children seems hepatoxic in infants with CTX. Adequate metabolic control in an infant with CTX was achieved with CDCA supplementation at 5 mg/kg/day and well tolerated.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Ácido Quenodesoxicólico/efeitos adversos , Xantomatose Cerebrotendinosa/complicações , Ácido Quenodesoxicólico/administração & dosagem , Pré-Escolar , Encefalite Viral , Feminino , Humanos , Recém-Nascido , Triagem Neonatal , Parechovirus , Infecções por Picornaviridae/complicações , Xantomatose Cerebrotendinosa/etiologia , Xantomatose Cerebrotendinosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA