Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(39): e2408324121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39288173

RESUMO

Myasthenia gravis (MG) is a chronic and severe disease of the skeletal neuromuscular junction (NMJ) in which the effects of neurotransmitters are attenuated, leading to muscle weakness. In the most common forms of autoimmune MG, antibodies attack components of the postsynaptic membrane, including the acetylcholine receptor (AChR) or muscle-specific kinase (MuSK). MuSK, a master regulator of NMJ development, associates with the low-density lipoprotein-related receptor 4 (Lrp4) to form the signaling receptor for neuronal Agrin, a nerve-derived synaptic organizer. Pathogenic antibodies to MuSK interfere with binding between MuSK and Lrp4, inhibiting the differentiation and maintenance of the NMJ. MuSK MG can be debilitating and refractory to treatments that are effective for AChR MG. We show here that recombinant antibodies, derived from MuSK MG patients, cause severe neuromuscular disease in mice. The disease can be prevented by a MuSK agonist antibody, presented either prophylactically or after disease onset. These findings suggest a therapeutic alternative to generalized immunosuppression for treating MuSK MG by selectively and directly targeting the disease mechanism.


Assuntos
Miastenia Gravis , Junção Neuromuscular , Receptores Proteína Tirosina Quinases , Receptores Colinérgicos , Animais , Receptores Proteína Tirosina Quinases/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Camundongos , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/imunologia , Receptores Colinérgicos/imunologia , Receptores Colinérgicos/metabolismo , Miastenia Gravis/imunologia , Miastenia Gravis/tratamento farmacológico , Humanos , Proteínas Relacionadas a Receptor de LDL/imunologia , Autoanticorpos/imunologia , Feminino , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Anticorpos/imunologia , Anticorpos/farmacologia , Modelos Animais de Doenças , Ácidos Graxos Monoinsaturados
2.
Eur J Neurosci ; 59(12): 3292-3308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650308

RESUMO

Muscle-specific kinase myasthenia gravis (MuSK MG) is caused by autoantibodies against MuSK in the neuromuscular junction (NMJ). MuSK MG patients have fluctuating, fatigable skeletal muscle weakness, in particular of bulbar muscles. Severity differs greatly between patients, in spite of comparable autoantibody levels. One explanation for inter-patient and inter-muscle variability in sensitivity might be variations in compensatory muscle responses. Previously, we developed a passive transfer mouse model for MuSK MG. In preliminary ex vivo experiments, we observed that muscle contraction of some mice, in particular those with milder myasthenia, had become partially insensitive to inhibition by µ-Conotoxin-GIIIB, a blocker of skeletal muscle NaV1.4 voltage-gated sodium channels. We hypothesised that changes in NaV channel expression profile, possibly co-expression of (µ-Conotoxin-GIIIB insensitive) NaV1.5 type channels, might lower the muscle fibre's firing threshold and facilitate neuromuscular synaptic transmission. To test this hypothesis, we here performed passive transfer in immuno-compromised mice, using 'high', 'intermediate' and 'low' dosing regimens of purified MuSK MG patient IgG4. We compared myasthenia levels, µ-Conotoxin-GIIIB resistance and muscle fibre action potential characteristics and firing thresholds. High- and intermediate-dosed mice showed clear, progressive myasthenia, not seen in low-dosed animals. However, diaphragm NMJ electrophysiology demonstrated almost equal myasthenic severities amongst all regimens. Nonetheless, low-dosed mouse diaphragms showed a much higher degree of µ-Conotoxin-GIIIB resistance. This was not explained by upregulation of Scn5a (the NaV1.5 gene), lowered muscle fibre firing thresholds or histologically detectable upregulated NaV1.5 channels. It remains to be established which factors are responsible for the observed µ-Conotoxin-GIIIB insensitivity and whether the NaV repertoire change is compensatory beneficial or a bystander effect.


Assuntos
Músculo Esquelético , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Humanos , Miastenia Gravis/metabolismo , Miastenia Gravis/fisiopatologia , Miastenia Gravis/imunologia , Modelos Animais de Doenças , Feminino , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/imunologia , Canais de Sódio Disparados por Voltagem/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Autoanticorpos , Masculino , Conotoxinas/farmacologia , Imunização Passiva
3.
Handb Clin Neurol ; 200: 283-305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494283

RESUMO

Myasthenia gravis (MG) is an autoimmune disease characterized by dysfunction of the neuromuscular junction resulting in skeletal muscle weakness. It is equally prevalent in males and females, but debuts at a younger age in females and at an older age in males. Ptosis, diplopia, facial bulbar weakness, and limb weakness are the most common symptoms. MG can be classified based on the presence of serum autoantibodies. Acetylcholine receptor (AChR) antibodies are found in 80%-85% of patients, muscle-specific kinase (MuSK) antibodies in 5%-8%, and <1% may have low-density lipoprotein receptor-related protein 4 (Lrp4) antibodies. Approximately 10% of patients are seronegative for antibodies binding the known disease-related antigens. In patients with AChR MG, 10%-20% have a thymoma, which is usually detected at the onset of the disease. Important differences between clinical presentation, treatment responsiveness, and disease mechanisms have been observed between these different serologic MG classes. Besides the typical clinical features and serologic testing, the diagnosis can be established with additional tests, including repetitive nerve stimulation, single fiber EMG, and the ice pack test. Treatment options for MG consist of symptomatic treatment (such as pyridostigmine), immunosuppressive treatment, or thymectomy. Despite the treatment with symptomatic drugs, steroid-sparing immunosuppressants, intravenous immunoglobulins, plasmapheresis, and thymectomy, a large proportion of patients remain chronically dependent on corticosteroids (CS). In the past decade, the number of treatment options for MG has considerably increased. Advances in the understanding of the pathophysiology have led to new treatment options targeting B or T cells, the complement cascade, the neonatal Fc receptor or cytokines. In the future, these new treatments are likely to reduce the chronic use of CS, diminish side effects, and decrease the number of patients with refractory disease.


Assuntos
Miastenia Gravis , Feminino , Humanos , Masculino , Autoanticorpos , Eletromiografia , Imunossupressores , Miastenia Gravis/diagnóstico , Miastenia Gravis/terapia , Junção Neuromuscular/metabolismo
4.
Sci Rep ; 13(1): 7478, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156800

RESUMO

Muscle-specific kinase (MuSK) is crucial for acetylcholine receptor (AChR) clustering and thereby neuromuscular junction (NMJ) function. NMJ dysfunction is a hallmark of several neuromuscular diseases, including MuSK myasthenia gravis. Aiming to restore NMJ function, we generated several agonist monoclonal antibodies targeting the MuSK Ig-like 1 domain. These activated MuSK and induced AChR clustering in cultured myotubes. The most potent agonists partially rescued myasthenic effects of MuSK myasthenia gravis patient IgG autoantibodies in vitro. In an IgG4 passive transfer MuSK myasthenia model in NOD/SCID mice, MuSK agonists caused accelerated weight loss and no rescue of myasthenic features. The MuSK Ig-like 1 domain agonists unexpectedly caused sudden death in a large proportion of male C57BL/6 mice (but not female or NOD/SCID mice), likely caused by a urologic syndrome. In conclusion, these agonists rescued pathogenic effects in myasthenia models in vitro, but not in vivo. The sudden death in male mice of one of the tested mouse strains revealed an unexpected and unexplained role for MuSK outside skeletal muscle, thereby hampering further (pre-) clinical development of these clones. Future research should investigate whether other Ig-like 1 domain MuSK antibodies, binding different epitopes, do hold a safe therapeutic promise.


Assuntos
Miastenia Gravis , Receptores Proteína Tirosina Quinases , Masculino , Animais , Camundongos , Camundongos SCID , Receptores Proteína Tirosina Quinases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Miastenia Gravis/metabolismo , Receptores Colinérgicos/metabolismo , Autoanticorpos , Debilidade Muscular , Acetilcolina
5.
Nat Rev Immunol ; 23(11): 763-778, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37095254

RESUMO

IgG4 is the least abundant subclass of IgG in human serum and has unique functional features. IgG4 is largely unable to activate antibody-dependent immune effector responses and, furthermore, undergoes Fab (fragment antigen binding)-arm exchange, rendering it bispecific for antigen binding and functionally monovalent. These properties of IgG4 have a blocking effect, either on the immune response or on the target protein of IgG4. In this Review, we discuss the unique structural characteristics of IgG4 and how these contribute to its roles in health and disease. We highlight how, depending on the setting, IgG4 responses can be beneficial (for example, in responses to allergens or parasites) or detrimental (for example, in autoimmune diseases, in antitumour responses and in anti-biologic responses). The development of novel models for studying IgG4 (patho)physiology and understanding how IgG4 responses are regulated could offer insights into novel treatment strategies for these IgG4-associated disease settings.


Assuntos
Doenças Autoimunes , Imunoglobulina G , Humanos
6.
J Allergy Clin Immunol ; 151(6): 1646-1654, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36716825

RESUMO

BACKGROUND: Increased prevalence of autoantibody Fab glycosylation has been demonstrated for several autoimmune diseases. OBJECTIVES: To study whether elevated Fab glycosylation is a common feature of autoimmunity, this study investigated Fab glycosylation levels on serum IgG and its subclasses for autoantibodies associated with a range of different B cell-mediated autoimmune diseases, including rheumatoid arthritis, myasthenia gravis subtypes, pemphigus vulgaris, antineutrophil cytoplasmic antibody-associated vasculitis, systemic lupus erythematosus, anti-glomerular basement membrane glomerulonephritis, thrombotic thrombocytopenic purpura, and Guillain-Barré syndrome. METHODS: The level of Fab glycosylated IgG antibodies was assessed by lectin affinity chromatography and autoantigen-specific immunoassays. RESULTS: In 6 of 10 autoantibody responses, in 5 of 8 diseases, the investigators found increased levels of Fab glycosylation on IgG autoantibodies that varied from 86% in rheumatoid arthritis to 26% in systemic lupus erythematosus. Elevated autoantibody Fab glycosylation was not restricted to IgG4, which is known to be prone to Fab glycosylation, but was also present in IgG1. When autoimmune diseases with a chronic disease course were compared with more acute autoimmune illnesses, increased Fab glycosylation was restricted to the chronic diseases. As a proxy for chronic autoantigen exposure, the investigators determined Fab glycosylation levels on antibodies to common latent herpes viruses, as well as to glycoprotein 120 in individuals who are chronically HIV-1-infected. Immunity to these viral antigens was not associated with increased Fab glycosylation levels, indicating that chronic antigen-stimulation as such does not lead to increased Fab glycosylation levels. CONCLUSIONS: These data indicate that in chronic but not acute B cell-mediated autoimmune diseases, disease-specific autoantibodies are enriched for Fab glycans.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Miastenia Gravis , Humanos , Autoanticorpos , Imunoglobulina G , Autoantígenos
7.
J Neuroimmunol ; 373: 577978, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240543

RESUMO

Muscle-specific kinase (MuSK) myasthenia gravis (MG) is a neuromuscular autoimmune disease belonging to a growing group of IgG4 autoimmune diseases (IgG4-AIDs), in which the majority of pathogenic autoantibodies are of the IgG4 subclass. The more prevalent form of MG with acetylcholine receptor (AChR) antibodies is caused by IgG1-3 autoantibodies. A dominant role for IgG4 in autoimmune disease is intriguing due to its anti-inflammatory characteristics. It is unclear why MuSK autoantibodies are predominantly IgG4. We hypothesized that MuSK MG patients have a general predisposition to generate IgG4 responses, therefore resulting in high levels of circulating IgG4. To investigate this, we quantified serum Ig isotypes and IgG subclasses using nephelometric and turbidimetric assays in MuSK MG and AChR MG patients not under influence of immunosuppressive treatment. Absolute serum IgG1 was increased in both MuSK and AChR MG patients compared to healthy donors. In addition, only MuSK MG patients on average had significantly increased and enriched serum IgG4. Although more MuSK MG patients had elevated serum IgG4, for most the IgG4 serum levels fell within the normal range. Correlation analyses suggest MuSK-specific antibodies do not solely explain the variation in IgG4 levels. In conclusion, although serum IgG4 levels are slightly increased, the levels do not support ubiquitous IgG4 responses in MuSK MG patients as the underlying cause of dominant IgG4 MuSK antibodies.


Assuntos
Imunoglobulina G , Miastenia Gravis , Humanos , Autoanticorpos
8.
J Neuroimmunol ; 370: 577930, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905614

RESUMO

OBJECTIVE: To determine the effect of tetanus toxoid (TT) revaccination on circulating B-, T- and NK-cell compartments in myasthenia gravis (MG) patients. METHODS: Lymphocyte (sub)populations and differentiation stages were assessed by flow cytometry in 50 TT revaccinated MG patients. TT-specific proliferative responses were explored in PBMC cultures. RESULTS: In patients treated with azathioprine B- and NK cell numbers were strongly decreased. Lymphocyte (sub)populations remained unaffected upon TT revaccination. t All patients showed a significant TT-induced proliferative response. CONCLUSION: TT revaccination is effective in MG patients with stable disease irrespective of their thymectomy status and medication and does not alter the composition of the lymphocyte compartment.


Assuntos
Miastenia Gravis , Tétano , Humanos , Imunização Secundária , Terapia de Imunossupressão , Leucócitos Mononucleares , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/cirurgia , Timectomia
10.
Front Immunol ; 13: 834342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401530

RESUMO

Organ-specific autoimmunity is often characterized by autoantibodies targeting proteins expressed in the affected tissue. A subgroup of autoimmunopathies has recently emerged that is characterized by predominant autoantibodies of the IgG4 subclass (IgG4-autoimmune diseases; IgG4-AID). This group includes pemphigus vulgaris, thrombotic thrombocytopenic purpura, subtypes of autoimmune encephalitis, inflammatory neuropathies, myasthenia gravis and membranous nephropathy. Although the associated autoantibodies target specific antigens in different organs and thus cause diverse syndromes and diseases, they share surprising similarities in genetic predisposition, disease mechanisms, clinical course and response to therapies. IgG4-AID appear to be distinct from another group of rare immune diseases associated with IgG4, which are the IgG4-related diseases (IgG4-RLD), such as IgG4-related which have distinct clinical and serological properties and are not characterized by antigen-specific IgG4. Importantly, IgG4-AID differ significantly from diseases associated with IgG1 autoantibodies targeting the same organ. This may be due to the unique functional characteristics of IgG4 autoantibodies (e.g. anti-inflammatory and functionally monovalent) that affect how the antibodies cause disease, and the differential response to immunotherapies of the IgG4 producing B cells/plasmablasts. These clinical and pathophysiological clues give important insight in the immunopathogenesis of IgG4-AID. Understanding IgG4 immunobiology is a key step towards the development of novel, IgG4 specific treatments. In this review we therefore summarize current knowledge on IgG4 regulation, the relevance of class switching in the context of health and disease, describe the cellular mechanisms involved in IgG4 production and provide an overview of treatment responses in IgG4-AID.


Assuntos
Autoanticorpos , Miastenia Gravis , Linfócitos B , Humanos , Switching de Imunoglobulina , Imunoglobulina G , Imunoterapia
11.
J Neurosci Methods ; 373: 109551, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247492

RESUMO

BACKGROUND: Myasthenia gravis (MG) is an autoimmune neuromuscular disorder hallmarked by fluctuating fatigable muscle weakness. Most patients have autoantibodies against acetylcholine receptors (AChRs) at the neuromuscular junction (NMJ). These are thought to have three possible pathogenic mode-of-actions: 1) cross-linking and endocytosis of AChRs, 2) direct block of AChRs and 3) complement activation. The relative contributions of these mechanisms to synaptic block and muscle weakness of individual patients cannot be determined. It likely varies between patients and perhaps also with disease course, depending on the nature of the circulating AChR antibodies. NEW METHOD: We developed a new bioassay which specifically enables functional characterization and quantification of complement-mediated synaptic damage at NMJs, without interference of the other pathogenic mechanisms. To this end, we pre-incubated mouse hemi-diaphragm muscle-nerve preparations with mAb35-hG1, a humanized rat AChR monoclonal and subsequently exposed the preparation to normal human serum as a complement source. NMJ-restricted effects were studied. RESULTS: Clearly NMJ-restricted damage occurred. With immunohistology we showed complement deposition at NMJs, and synaptic electrophysiological measurements demonstrated transmission block. In whole-muscle contraction experiments we quantified the effect and characterized its onset and progression during the incubation with normal human serum. COMPARISON WITH EXISTING METHODS: With this new assay the complement-mediated component of myasthenic NMJ pathology can be studied separately. CONCLUSIONS: Our assay will be of importance in detailed mechanistic studies of local complement activation at NMJs, investigations of new complement inhibitors, and laboratory pre-screening of therapeutic efficacy for individual MG patients to optimize care with clinically approved complement inhibitors.


Assuntos
Miastenia Gravis , Receptores Colinérgicos , Animais , Autoanticorpos , Bioensaio , Ativação do Complemento , Humanos , Camundongos , Miastenia Gravis/terapia , Junção Neuromuscular/patologia , Ratos
12.
Eur J Neurosci ; 54(4): 5574-5585, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34228850

RESUMO

Myasthenia gravis (MG) is an acquired autoimmune disorder caused by autoantibodies binding acetylcholine receptors (AChR), muscle-specific kinase (MuSK), agrin or low-density lipoprotein receptor-related protein 4 (Lrp4). These autoantibodies inhibit neuromuscular transmission by blocking the function of these proteins and thereby cause fluctuating skeletal muscle weakness. Several reports suggest that these autoantibodies might also affect the central nervous system (CNS) in MG patients. A comprehensive overview of the timing and localization of the expression of MG-related antigens in other organs is currently lacking. To investigate the spatio-temporal expression of MG-related genes outside skeletal muscle, we used in silico tools to assess public expression databases. Acetylcholine esterase, nicotinic AChR α1 subunit, agrin, collagen Q, downstream of kinase-7, Lrp4, MuSK and rapsyn were included as MG-related genes because of their well-known involvement in either congenital or autoimmune MG. We investigated expression of MG-related genes in (1) all human tissues using GTEx data, (2) specific brain regions, (3) neurodevelopmental stages, and (4) cell types using datasets from the Allen Institute for Brain Sciences. MG-related genes show heterogenous spatio-temporal expression patterns in the human body as well as in the CNS. For each of these genes, several (new) tissues, brain areas and cortical cell types with (relatively) high expression were identified suggesting a potential role for these genes outside skeletal muscle. The possible presence of MG-related antigens outside skeletal muscle suggests that autoimmune MG, congenital MG or treatments targeting the same proteins may affect MG-related protein function in other organs.


Assuntos
Proteínas Relacionadas a Receptor de LDL , Miastenia Gravis , Agrina , Autoanticorpos , Expressão Gênica , Humanos , Miastenia Gravis/genética
13.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753489

RESUMO

Human immunoglobulin (Ig) G4 usually displays antiinflammatory activity, and observations of IgG4 autoantibodies causing severe autoimmune disorders are therefore poorly understood. In blood, IgG4 naturally engages in a stochastic process termed "Fab-arm exchange" in which unrelated IgG4s exchange half-molecules continuously. The resulting IgG4 antibodies are composed of two different binding sites, thereby acquiring monovalent binding and inability to cross-link for each antigen recognized. Here, we demonstrate that this process amplifies autoantibody pathogenicity in a classic IgG4-mediated autoimmune disease: muscle-specific kinase (MuSK) myasthenia gravis. In mice, monovalent anti-MuSK IgG4s caused rapid and severe myasthenic muscle weakness, whereas the same antibodies in their parental bivalent form were less potent or did not induce a phenotype. Mechanistically this could be explained by opposing effects on MuSK signaling. Isotype switching to IgG4 in an autoimmune response thereby may be a critical step in the development of disease. Our study establishes functional monovalency as a pathogenic mechanism in IgG4-mediated autoimmune disease and potentially other disorders.


Assuntos
Autoanticorpos/imunologia , Imunoglobulina G/imunologia , Miastenia Gravis/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Autoanticorpos/administração & dosagem , Autoanticorpos/genética , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/genética , Masculino , Camundongos , Miastenia Gravis/patologia , Mioblastos , Junção Neuromuscular/imunologia , Junção Neuromuscular/patologia , Fosforilação/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
14.
J Autoimmun ; 112: 102488, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32505442

RESUMO

Muscle-specific kinase (MuSK) plays a critical role in establishing and maintaining neuromuscular synapses. Antibodies derived from immunizing animals with MuSK were important tools to help detect MuSK and its activity. The role of antibodies in MuSK-related research got an extra dimension when autoantibodies to MuSK were found to cause myasthenia gravis (MG) in 2001. Active immunization with MuSK or passive transfer of polyclonal purified IgG(4) fractions from patients reproduced myasthenic muscle weakness in a range of animal models. Polyclonal patient-purified autoantibodies were furthermore found to block agrin-Lrp4-MuSK signaling, explaining the synaptic disassembly, failure of neuromuscular transmission and ultimately muscle fatigue observed in vivo. MuSK autoantibodies are predominantly of the IgG4 subclass. Low levels of other subclass MuSK antibodies coexist, but their role in the pathogenesis is unclear. Patient-derived monoclonal antibodies revealed that MuSK antibody subclass and valency alters their functional effects and possibly their pathogenicity. Interestingly, recombinant functional bivalent MuSK antibodies might even have therapeutic potential for a variety of neuromuscular disorders, due to their agonistic nature on the MuSK signaling cascade. Thus, MuSK antibodies have proven to be helpful tools to study neuromuscular junction physiology, contributed to our understanding of the pathophysiology of MuSK MG and might be used to treat neuromuscular disorders. The source of MuSK antibodies and consequently their (mixed) polyclonal or monoclonal nature were important confounding factors in these experiments. Here we review the variety of MuSK antibodies described thus far, the insights they have given us and their potential for the future.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Miastenia Gravis/imunologia , Junção Neuromuscular/patologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Animais , Autoanticorpos/sangue , Autoanticorpos/metabolismo , Autoantígenos/metabolismo , Modelos Animais de Doenças , Epitopos/imunologia , Humanos , Miastenia Gravis/sangue , Miastenia Gravis/patologia , Junção Neuromuscular/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo
16.
Neurol Neuroimmunol Neuroinflamm ; 6(3): e547, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30882021

RESUMO

Objective: To isolate and characterize muscle-specific kinase (MuSK) monoclonal antibodies from patients with MuSK myasthenia gravis (MG) on a genetic and functional level. Methods: We generated recombinant MuSK antibodies from patient-derived clonal MuSK-specific B cells and produced monovalent Fab fragments from them. Both the antibodies and Fab fragments were tested for their effects on neural agrin-induced MuSK phosphorylation and acetylcholine receptor (AChR) clustering in myotube cultures. Results: The isolated MuSK monoclonal antibody sequences included IgG1, IgG3, and IgG4 that had undergone high levels of affinity maturation, consistent with antigenic selection. We confirmed their specificity for the MuSK Ig-like 1 domain and binding to neuromuscular junctions. Monovalent MuSK Fab, mimicking functionally monovalent MuSK MG patient Fab-arm exchanged serum IgG4, abolished agrin-induced MuSK phosphorylation and AChR clustering. Surprisingly, bivalent monospecific MuSK antibodies instead activated MuSK phosphorylation and partially induced AChR clustering, independent of agrin. Conclusions: Patient-derived MuSK antibodies can act either as MuSK agonist or MuSK antagonist, depending on the number of MuSK binding sites. Functional monovalency, induced by Fab-arm exchange in patient serum, makes MuSK IgG4 antibodies pathogenic.


Assuntos
Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Miastenia Gravis/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Adulto , Anticorpos Monoclonais/isolamento & purificação , Autoanticorpos/isolamento & purificação , Células Cultivadas , Humanos , Fibras Musculares Esqueléticas , Receptores Proteína Tirosina Quinases/agonistas , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Proteínas Recombinantes
17.
Ann N Y Acad Sci ; 1413(1): 92-103, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29377160

RESUMO

Immunoglobulin 4 (IgG4) is one of four human IgG subclasses and has several unique functional characteristics. It exhibits low affinity for complement and for most Fc receptors. It furthermore has generally high affinity for its antigen, with binding occurring in a monovalent fashion, as IgG4 can exchange Fab-arms with other IgG4 molecules. Because of these characteristics, IgG4 is believed to block its targets and prevent inflammation, which, depending on the setting, can have a protective or pathogenic effect. One example of IgG4 pathogenicity is muscle-specific kinase (MuSK) myasthenia gravis (MG), in which patients develop IgG4 MuSK autoantibodies, resulting in muscle weakness. As a consequence of the distinct IgG4 characteristics, the pathomechanism of MuSK MG is very different from IgG1-and IgG3-mediated autoimmune diseases, such as acetylcholine receptor MG. In recent years, new autoantibodies in a spectrum of autoimmune diseases have been discovered. Interestingly, some were found to be predominantly IgG4. These IgG4-mediated autoimmune diseases share many pathomechanistic aspects with MuSK MG, suggesting that IgG4-mediated autoimmunity forms a separate niche among the antibody-mediated disorders. In this review, we summarize the group of IgG4-mediated autoimmune diseases, discuss the role of IgG4 in MuSK MG, and highlight interesting future research questions for IgG4-mediated autoimmunity.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Imunoglobulina G/imunologia , Miastenia Gravis/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Autoimunidade/imunologia , Humanos , Imunoglobulina G/classificação , Debilidade Muscular/patologia , Junção Neuromuscular/metabolismo
18.
Ann N Y Acad Sci ; 1413(1): 111-118, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29356029

RESUMO

Myasthenia gravis (MG) with antibodies to muscle-specific kinase (MuSK) is characterized by fluctuating fatigable weakness. In MuSK MG, involvement of bulbar muscles, neck, and shoulder and respiratory weakness are more prominent than in acetylcholine receptor (AChR) MG. MuSK autoantibodies are mainly of the IgG4 subclass, and as such are unable to activate complement, have low affinity for Fc receptors, and are functionally monovalent. Therefore, the pathogenicity of IgG4 MuSK autoantibodies was initially questioned. A broad collection of in vitro active immunization and passive transfer models has been developed that have shed light on the pathogenicity of MuSK autoantibodies. Passive transfer studies with purified IgG4 from MuSK MG patients confirmed that IgG4 is sufficient to reproduce clear clinical, electrophysiological, and histological signs of myasthenia. In vitro experiments revealed that MuSK IgG4 autoantibodies preferably bind the first Ig-like domain of MuSK, correlate with disease severity, and interfere with the association between MuSK and low-density lipoprotein receptor-related protein 4 and collagen Q. Some patients have additional IgG1 MuSK autoantibodies, but their role in the disease is unclear. Altogether, this provides a rationale for epitope-specific or IgG4-specific treatment strategies for MuSK MG and emphasizes the importance of the development of different experimental models.


Assuntos
Autoanticorpos/imunologia , Imunização Passiva/métodos , Imunoglobulina G/imunologia , Miastenia Gravis/imunologia , Miastenia Gravis/patologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Debilidade Muscular/genética , Debilidade Muscular/patologia , Miastenia Gravis/genética
19.
Vaccine ; 35(46): 6290-6296, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992975

RESUMO

OBJECTIVE: To investigate the humoral immune response to and safety of a tetanus revaccination in patients with myasthenia gravis or Lambert-Eaton myasthenic syndrome. METHODS: A tetanus revaccination was administered to 66 patients. Before and 4weeks after revaccination a blood sample and clinical outcome scores were obtained. Anti-tetanus IgG total, IgG1 and IgG4 titres were measured with an ELISA and disease-specific antibody titres (AChR, MuSK or VGCC) with a radio-immunoprecipitation assay. A historic healthy control group was used for comparing tetanus antibody titres with that of our patients. A placebo (saline) vaccination group was used to investigate the variability of clinical outcome scores with a 4weeks interval. RESULTS: In 60 of 65 patients, a significant increase of the anti-tetanus antibody response was measured. Thymectomy did not have an impact on this responsiveness. Patients with immunosuppressive medication had a significantly lower pre and post titre compared to healthy controls, but their response was still significant. The titres of disease-specific antibodies were unchanged 4weeks after revaccination. The clinical outcome scores showed no exacerbation of symptoms of the disease. CONCLUSION: A tetanus revaccination in patients with myasthenia gravis or Lambert-Eaton myasthenic syndrome is safe and induces a significant immune response, irrespectively of their immunosuppressive medication. We observed neither immunological nor clinical relevant exacerbations associated with the tetanus revaccination. CLINICAL TRIAL REGISTRY: The tetanus trial is listed on clinicaltrialsregister.eu under 2014-004344-35. The placebo AChR MG group was part of another clinical trial, investigating influenza vaccination in myasthenic patients. This trial is listed on clinicaltrialsregister.eu under 2016-003138-26.


Assuntos
Imunidade Humoral , Imunização Secundária/efeitos adversos , Síndrome Miastênica de Lambert-Eaton/complicações , Miastenia Gravis/complicações , Toxoide Tetânico/efeitos adversos , Toxoide Tetânico/imunologia , Tétano/prevenção & controle , Adolescente , Adulto , Idoso , Anticorpos Antibacterianos/sangue , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Imunoprecipitação , Masculino , Pessoa de Meia-Idade , Placebos/administração & dosagem , Estudos Prospectivos , Toxoide Tetânico/administração & dosagem , Adulto Jovem
20.
J Autoimmun ; 77: 104-115, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27965060

RESUMO

Autoimmunity mediated by IgG4 subclass autoantibodies is an expanding field of research. Due to their structural characteristics a key feature of IgG4 antibodies is the ability to exchange Fab-arms with other, unrelated, IgG4 molecules, making the IgG4 molecule potentially monovalent for the specific antigen. However, whether those disease-associated antigen-specific IgG4 are mono- or divalent for their antigens is unknown. Myasthenia gravis (MG) with antibodies to muscle specific kinase (MuSK-MG) is a well-recognized disease in which the predominant pathogenic IgG4 antibody binds to extracellular epitopes on MuSK at the neuromuscular junction; this inhibits a pathway that clusters the acetylcholine (neurotransmitter) receptors and leads to failure of neuromuscular transmission. In vitro Fab-arm exchange-inducing conditions were applied to MuSK antibodies in sera, purified IgG4 and IgG1-3 sub-fractions. Solid-phase cross-linking assays were established to determine the extent of pre-existing and inducible Fab-arm exchange. Functional effects of the resulting populations of IgG4 antibodies were determined by measuring inhibition of agrin-induced AChR clustering in C2C12 cells. To confirm the results, κ/κ, λ/λ and hybrid κ/λ IgG4s were isolated and tested for MuSK antibodies. At least fifty percent of patients had IgG4, but not IgG1-3, MuSK antibodies that could undergo Fab-arm exchange in vitro under reducing conditions. Also MuSK antibodies were found in vivo that were divalent (monospecific for MuSK). Fab-arm exchange with normal human IgG4 did not prevent the inhibitory effect of serum derived MuSK antibodies on AChR clustering in C2C12 mouse myotubes. The results suggest that a considerable proportion of MuSK IgG4 could already be Fab-arm exchanged in vivo. This was confirmed by isolating endogenous IgG4 MuSK antibodies containing both κ and λ light chains, i.e. hybrid IgG4 molecules. These new findings demonstrate that Fab-arm exchanged antibodies are pathogenic.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Miastenia Gravis/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Adolescente , Adulto , Idoso , Anticorpos Biespecíficos/imunologia , Afinidade de Anticorpos/imunologia , Autoanticorpos/sangue , Autoimunidade/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/diagnóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA