Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 178: 26-38, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32659447

RESUMO

Bis(monoacylglycero)phosphate (BMP), also known as lysobisphosphatidic acid (LBPA), is a phospholipid specifically enriched in the late endosome-lysosome compartment playing a crucial role for the fate of endocytosed components. Due to its presence in extracellular fluids during diseases associated with endolysosomal dysfunction, it is considered as a possible biomarker of disorders such as genetic lysosomal storage diseases and cationic amphiphilic drug-induced phospholipidosis. However, there is no true validation of this biomarker in human studies, nor a clear identification of the carrier of this endolysosome-specific lipid in biofluids. The present study demonstrates that in absence of any sign of renal failure, BMP, especially all docosahexaenoyl containing species, are significantly increased in the urine of patients treated with the antiarrhythmic drug amiodarone. Such urinary BMP increase could reflect a generalized drug-induced perturbation of the endolysosome compartment as observed in vitro with amiodarone-treated human macrophages. Noteworthy, BMP was associated with extracellular vesicles (EVs) isolated from human urines and extracellular medium of human embryonic kidney HEK293 cells and co-localizing with classical EV protein markers CD63 and ALIX. In the context of drug-induced endolysosomal dysfunction, increased BMP-rich EV release could be useful to remove excess of undigested material. This first human pilot study not only reveals BMP as a urinary biomarker of amiodarone-induced endolysosomal dysfunction, but also highlights its utility to prove the endosomal origin of EVs, also named as exosomes. This peculiar lipid already known as a canonical late endosome-lysosome marker, may be thus considered as a new lipid marker of urinary exosomes.


Assuntos
Endossomos/química , Endossomos/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , Idoso , Amiodarona/efeitos adversos , Animais , Antiarrítmicos/efeitos adversos , Biomarcadores/urina , Endossomos/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Nefropatias/induzido quimicamente , Lisofosfolipídeos/química , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monoglicerídeos/química , Projetos Piloto , Ratos , Células THP-1
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(9): 1247-1257, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31136841

RESUMO

Bis(Monoacylglycero) Phosphate (BMP) is a unique phospholipid localized in late endosomes, a critical cellular compartment in low density lipoprotein (LDL)-cholesterol metabolism. In previous work, we demonstrated the important role of BMP in the regulation of macrophage cholesterol homeostasis. BMP exerts a protective role against the pro-apoptotic effect of oxidized LDL (oxLDL) by reducing the production of deleterious oxysterols. As the intracellular sterol traffic in macrophages is in part regulated by oxysterol binding protein (OSBP) and OSBP-related proteins (ORPs), we investigated the role of ORP11, localized at the Golgi-late endosomes interface, in the BMP-mediated protection from oxLDL/oxysterol cytotoxicity. Stably silencing of ORP11 in mouse RAW264.7 macrophages via a shRNA lentiviruses system had no effect on BMP production. However, ORP11 knockdown abrogated the protective action of BMP against oxLDL induced apoptosis. In oxLDL treated control cells, BMP enrichment was associated with reduced generation of 7-oxysterols, while these oxysterol species were abundant in the ORP11 knock-down cells. Of note, BMP enrichment in ORP11 knock-down cells was associated with a drastic increase in free cholesterol and linked to a decrease of cholesterol efflux. The expression of ATP-binding cassette-transporter G1 (ABCG1) was also reduced in the ORP11 knock-down cells. These observations demonstrate a cooperative function of OPR11 and BMP, in intracellular cholesterol trafficking in cultured macrophages. We suggest that BMP favors the egress of cholesterol from late endosomes via an ORP11-dependent mechanism, resulting in a reduced production of cytotoxic 7-oxysterols.


Assuntos
Lipoproteínas LDL/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Monoglicerídeos/metabolismo , Receptores de Esteroides/metabolismo , Animais , Apoptose , Colesterol/metabolismo , Humanos , Camundongos , Células RAW 264.7
3.
Biochimie ; 153: 232-237, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29704538

RESUMO

Oxidized LDL (OxLDL) that are enriched in products of lipid peroxidation including oxysterols have been shown to induce cellular oxidative stress and cytotoxicity therefore accelerating atheroma plaque formation. Upon oxLDL exposure of THP-1 macrophages, intracellular oxidation of LDL derived-cholesterol as well as endogenous cholesterol was increased. The oxysterols intracellularly produced were efficiently exported to HDL whereas apolipoprotein A1 was inefficient. These findings prompted us to investigate the consequences of modification of HDL by oxidation and glycation as observed in type 2 diabetes with respect to oxysterol and cholesterol efflux. We show that efflux of oxysterols was significantly impaired after in vitro oxidation and glycoxidation of HDL whereas glycation alone had no impact. Cholesterol efflux was only slightly decreased by oxHDL or glycoxidized HDL and not changed with glycated HDL. The defect of HDL towards oxysterol efflux was also observed with HDL isolated from diabetic subjects as compared to healthy controls. These findings support a deleterious cellular retention of oxysterols due to dysfunctional HDL in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Oxisteróis/metabolismo , Transporte Biológico , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/patologia , Feminino , Glucose/metabolismo , Humanos , Masculino , Oxirredução , Células THP-1
4.
J Biol Chem ; 291(50): 26109-26125, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27815506

RESUMO

Hormone-sensitive acute steroid biosynthesis requires trafficking of cholesterol from intracellular sources to the inner mitochondrial membrane. The precise location of the intracellular cholesterol and its transport mechanism are uncertain. Perfringolysin O, produced by Clostridium perfringens, binds cholesterol. Its fourth domain (D4) retains cholesterol-binding properties but not cytotoxicity. We transfected steroidogenic MA-10 cells of mouse Leydig cell tumors with the mCherry-D4 plasmid. Tagged D4 with fluorescent proteins enabled us to track cholesterol. The staining was primarily localized to the inner leaflet of the plasma membrane and was partially released upon treatment with dibutyryl-cAMP (Bt2cAMP), a cAMP analog. Inhibitors of cholesterol import into mitochondria blocked steroidogenesis and prevented release of D4 (and presumably cholesterol) from the plasma membrane. We conclude that the bulk of the steroidogenic pool of cholesterol, mobilized by Bt2cAMP for acute steroidogenesis, originates from the plasma membrane. Treatment of the cells with steroid metabolites, 22(R)-hydroxycholesterol and pregnenolone, also reduced D4 release from the plasma membrane, perhaps evidence for a feedback effect of elevated steroid formation on cholesterol release. Interestingly, D4 staining was localized to endosomes during Bt2cAMP stimulation suggesting that these organelles are on the route of cholesterol trafficking from the plasma membrane to mitochondria. Finally, D4 was expressed in primary rat Leydig cells with a lentivirus and was released from the plasma membrane following Bt2cAMP treatment. We conclude that the plasma membrane is the source of cholesterol for steroidogenesis in these cells as well as in MA-10 cells.


Assuntos
Membrana Celular/metabolismo , Hidroxicolesteróis/metabolismo , Células Intersticiais do Testículo/metabolismo , Mitocôndrias/metabolismo , Pregnenolona/metabolismo , Animais , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Bucladesina/farmacologia , Linhagem Celular Tumoral , Membrana Celular/genética , Proteínas Hemolisinas/biossíntese , Proteínas Hemolisinas/genética , Células Intersticiais do Testículo/citologia , Masculino , Camundongos , Mitocôndrias/genética , Ratos
5.
Biochimie ; 130: 81-90, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27693589

RESUMO

In this mini-review, we summarize current knowledge about the lipid-binding characteristics of two types of toxins used to visualize the membrane distribution of phosphoethanolamine-containing lipid species: the glycerophospholipid, phosphatidylethanolamine (PE) and the sphingolipid, ceramide phosphoethanolamine (CPE). The lantibiotic cinnamycin and the structurally-related peptide duramycin produced by some Gram-positive bacteria were among the first toxins characterized by their specificity for PE which is widely present in animal kingdoms from bacteria to mammals. These toxins promoted their binding to PE-containing membranes by changing membrane curvature and by inducing transbilayer lipid movement. The recognition of the conical shape and negative curvature adopted by the PE species within the membrane, is important to understand how lipid-peptide interaction can occur. Three mushroom-derived proteins belonging to the aegerolysin family, pleurotolysin A2, ostreolysin and erylysin A were recently described as efficient tools to visualize the membrane distribution of CPE which is found in trace amounts in mammalian cells but in higher amounts in some developmental stages of lower eukaryotes like Trypanosoma and in invertebrates such as Drosophila. The recent development of lantibiotic-based PE-specific and aegerolysin-based CPE-specific probes is useful to visualize and specify the role of these lipids in various pathophysiological events such as cell division, apoptosis, tumor vasculature and parasite developmental stages.


Assuntos
Bacteriocinas/metabolismo , Etanolaminas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Hemolisinas/metabolismo , Peptídeos Cíclicos/metabolismo , Peptídeos/metabolismo , Fosfatidiletanolaminas/metabolismo , Animais , Bacteriocinas/química , Bacteriocinas/farmacologia , Ligação Competitiva/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Etanolaminas/química , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Proteínas Hemolisinas/química , Proteínas Hemolisinas/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Fosfatidiletanolaminas/química , Ligação Proteica/efeitos dos fármacos
6.
Toxicology ; 355-356: 21-30, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27181934

RESUMO

Previous work in our laboratory demonstrated that in-utero exposure to a mixture of the phytoestrogen Genistein (GEN), and plasticizer DEHP, induces short- and long-term alterations in testicular gene and protein expression different from individual exposures. These studies identified fetal and adult Leydig cells as sensitive targets for low dose endocrine disruptor (ED) mixtures. To further investigate the direct effects and mechanisms of toxicity of GEN and DEHP, MA-10 mouse tumor Leydig cells were exposed in-vitro to varying concentrations of GEN and MEHP, the principal bioactive metabolite of DEHP. Combined 10µM GEN+10µM MEHP had a stimulatory effect on basal progesterone production. Consistent with increased androgenicity, the mRNA of steroidogenic and cholesterol mediators Star, Cyp11a, Srb1 and Hsl, as well as upstream orphan nuclear receptors Nr2f2 and Sf1 were all significantly increased uniquely in the mixture treatment group. Insl3, a sensitive marker of Leydig endocrine disruption and cell function, was significantly decreased by combined GEN+MEHP. Lipid analysis by high-performance thin layer chromatography demonstrated the ability of combined 10µM combined GEN+MEHP, but not individual exposures, to increase levels of several neutral lipids and phospholipid classes, indicating a generalized deregulation of lipid homeostasis. Further investigation by qPCR analysis revealed a concomitant increase in cholesterol (Hmgcoa) and phospholipid (Srebp1c, Fasn) mediator mRNAs, suggesting the possible involvement of upstream LXRα agonism. These results suggest a deregulation of MA-10 Leydig function in response to a combination of GEN+MEHP. We propose a working model for GEN+MEHP doses relevant to human exposure involving LXR agonism and activation of other transcription factors. Taken more broadly, this research highlights the importance of assessing the impact of ED mixtures in multiple toxicological models across a range of environmentally relevant doses.


Assuntos
Dietilexilftalato/análogos & derivados , Disruptores Endócrinos/toxicidade , Genisteína/toxicidade , Células Intersticiais do Testículo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Cromatografia em Camada Fina , Dietilexilftalato/administração & dosagem , Dietilexilftalato/toxicidade , Relação Dose-Resposta a Droga , Disruptores Endócrinos/administração & dosagem , Genisteína/administração & dosagem , Homeostase , Células Intersticiais do Testículo/patologia , Masculino , Camundongos , Fosfolipídeos/metabolismo , Reação em Cadeia da Polimerase , Progesterona/biossíntese , Esteroides/biossíntese , Fatores de Transcrição/metabolismo
7.
FASEB J ; 29(2): 477-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25389132

RESUMO

Sphingomyelin (SM) is a major sphingolipid in mammalian cells and is reported to form specific lipid domains together with cholesterol. However, methods to examine the membrane distribution of SM are limited. We demonstrated in model membranes that fluorescent protein conjugates of 2 specific SM-binding toxins, lysenin (Lys) and equinatoxin II (EqtII), recognize different membrane distributions of SM; Lys exclusively binds clustered SM, whereas EqtII preferentially binds dispersed SM. Freeze-fracture immunoelectron microscopy showed that clustered but not dispersed SM formed lipid domains on the cell surface. Glycolipids and the membrane concentration of SM affect the SM distribution pattern on the plasma membrane. Using derivatives of Lys and EqtII as SM distribution-sensitive probes, we revealed the exclusive accumulation of SM clusters in the midbody at the time of cytokinesis. Interestingly, apical membranes of differentiated epithelial cells exhibited dispersed SM distribution, whereas SM was clustered in basolateral membranes. Clustered but not dispersed SM was absent from the cell surface of acid sphingomyelinase-deficient Niemann-Pick type A cells. These data suggest that both the SM content and membrane distribution are crucial for pathophysiological events bringing therapeutic perspective in the role of SM membrane distribution.


Assuntos
Citocinese/fisiologia , Esfingomielinas/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Polaridade Celular , Sobrevivência Celular , Chlorocebus aethiops , DNA Complementar/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Lactente , Lipossomos/metabolismo , Masculino , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Imunoeletrônica , Doença de Niemann-Pick Tipo A/genética , Proteínas Recombinantes/metabolismo
8.
Semin Cell Dev Biol ; 31: 48-56, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747366

RESUMO

Lipids play an essential role in the structure of the endosomal membranes as well as in their dynamic rearrangement during the transport of internalized cargoes along the endocytic pathway. In this review, we discuss the function of endosomal lipids mainly in mammalian cells, focusing on two well-known components of the lipid rafts, sphingomyelin and cholesterol, as well as on three anionic phospholipids, phosphatidylserine, polyphosphoinositides and the atypical phospholipid, bis(monoacylglycero)phosphate/lysobisphosphatidic acid. We detail the structure, metabolism, distribution and role of these lipids in the endosome system as well as their importance in pathological conditions where modification of the endosomal membrane flow can lead to various diseases such as lipid-storage diseases, myopathies and neuropathies.


Assuntos
Endossomos/metabolismo , Lipídeos de Membrana/metabolismo , Animais , Humanos
9.
J Biol Chem ; 287(29): 24397-411, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22605339

RESUMO

To identify novel inhibitors of sphingomyelin (SM) metabolism, a new and selective high throughput microscopy-based screening based on the toxicity of the SM-specific toxin, lysenin, was developed. Out of a library of 2011 natural compounds, the limonoid, 3-chloro-8ß-hydroxycarapin-3,8-hemiacetal (CHC), rendered cells resistant to lysenin by decreasing cell surface SM. CHC treatment selectively inhibited the de novo biosynthesis of SM without affecting glycolipid and glycerophospholipid biosynthesis. Pretreatment with brefeldin A abolished the limonoid-induced inhibition of SM synthesis suggesting that the transport of ceramide (Cer) from the endoplasmic reticulum to the Golgi apparatus is affected. Unlike the Cer transporter (CERT) inhibitor HPA-12, CHC did not change the transport of a fluorescent short chain Cer analog to the Golgi apparatus or the formation of fluorescent and short chain SM from the corresponding Cer. Nevertheless, CHC inhibited the conversion of de novo synthesized Cer to SM. We show that CHC specifically inhibited the CERT-mediated extraction of Cer from the endoplasmic reticulum membranes in vitro. Subsequent biochemical screening of 21 limonoids revealed that some of them, such as 8ß-hydroxycarapin-3,8-hemiacetal and gedunin, which exhibits anti-cancer activity, inhibited SM biosynthesis and CERT-mediated extraction of Cer from membranes. Model membrane studies suggest that 8ß-hydroxycarapin-3,8-hemiacetal reduced the miscibility of Cer with membrane lipids and thus induced the formation of Cer-rich membrane domains. Our study shows that certain limonoids are novel inhibitors of SM biosynthesis and suggests that some biological activities of these limonoids are related to their effect on the ceramide metabolism.


Assuntos
Ceramidas/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Limoninas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Esfingomielinas/biossíntese , Animais , Células CHO , Varredura Diferencial de Calorimetria , Cricetinae , Células HeLa , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Microscopia Confocal , Esfingolipídeos/metabolismo
10.
Cancer Res ; 69(20): 8133-40, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19826053

RESUMO

A number of epidemiologic studies have indicated a strong association between dietary fat intake and prostate cancer development, suggesting that lipid metabolism plays some important roles in prostate carcinogenesis and its progression. In this study, through our genome-wide gene expression analysis of clinical prostate cancer cells, we identified a novel lipogenic gene, ELOVL7, coding a possible long-chain fatty acid elongase, as overexpressed in prostate cancer cells. ELOVL7 expression is regulated by the androgen pathway through SREBP1, as well as other lipogenic enzymes. Knockdown of ELOVL7 resulted in drastic attenuation of prostate cancer cell growth, and it is notable that high-fat diet promoted the growth of in vivo tumors of ELOVL7-expressed prostate cancer. In vitro fatty acid elongation assay and fatty acid composition analysis indicated that ELOVL7 was preferentially involved in fatty acid elongation of saturated very-long-chain fatty acids (SVLFA, C20:0 approximately ). Lipid profiles showed that knockdown of ELOVL7 in prostate cancer cells affected SVLFAs in the phospholipids and the neutral lipids, such as cholesterol ester. Focusing on cholesterol ester as a source of de novo steroid synthesis, we show that ELOVL7 affected de novo androgen synthesis in prostate cancer cells. These findings suggest that EVOLV7 could be involved in prostate cancer growth and survival through the metabolism of SVLFAs and their derivatives, could be a key molecule to elucidate the association between fat dietary intake and prostate carcinogenesis, and could also be a promising molecular target for development of new therapeutic or preventive strategies for prostate cancers.


Assuntos
Acetiltransferases/fisiologia , Ácidos Graxos/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Neoplasias da Próstata/patologia , Androgênios/farmacologia , Animais , Biomarcadores Tumorais , Northern Blotting , Cromatografia Líquida , Gorduras na Dieta , Elongases de Ácidos Graxos , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoglobulina G/imunologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Neoplasias Hormônio-Dependentes/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fragmentos de Peptídeos/metabolismo , Neoplasias da Próstata/metabolismo , Coelhos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Espectrometria de Massas em Tandem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Lipid Res ; 50(2): 243-55, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18809971

RESUMO

Bis(monoacylglycero)phosphate (BMP) is a unique phospholipid (PL) preferentially found in late endosomal membranes, where it forms specialized lipid domains. Recently, using cultured macrophages treated with anti-BMP antibody, we showed that BMP-rich domains are involved in cholesterol homeostasis. We had previously stressed the high propensity of BMP to accumulate docosahexaenoic acid (DHA), compared with other PUFAs. Because phosphatidylglycerol (PG) was reported as a precursor for BMP synthesis in RAW macrophages, we examined the effects of PG supplementation on both FA composition and amount of BMP in this cell line. Supplementation with dioleoyl-PG (18:1/18:1-PG) induced BMP accumulation, together with an increase of oleate proportion. Supplementation with high concentrations of didocosahexaenoyl-PG (22:6/22:6-PG) led to a marked enrichment of DHA in BMP, resulting in the formation of diDHA molecular species. However, the amount of BMP was selectively decreased. Similar effects were observed after supplementation with high concentrations of nonesterified DHA. Addition of vitamin E prevented the decrease of BMP and further increased its DHA content. Supplementation with 22:6/22:6-PG promoted BMP accumulation with an enhanced proportion of 22:6/22:6-BMP. DHA-rich BMP was significantly degraded after cell exposure to oxidant conditions, in contrast to oleic acid-rich BMP, which was not affected. Using a cell-free system, we showed that 22:6/22:6-BMP is highly oxidizable and partially protects cholesterol oxidation, compared with 18:1/18:1-BMP. Our data suggest that high DHA content in BMP led to specific degradation of this PL, possibly through the diDHA molecular species, which is very prone to peroxidation and, as such, a potential antioxidant in its immediate vicinity.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Monoglicerídeos/metabolismo , Animais , Células Cultivadas , Colesterol/metabolismo , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Lipossomos/metabolismo , Camundongos , Oxirredução , Fosfatidilgliceróis/metabolismo
12.
Lipids ; 41(2): 189-96, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17707985

RESUMO

Lysobisphosphatidic acid (LBPA) is highly accumulated in specific domains of the late endosome and is involved in the biogenesis and function of this organelle. Little is known about the biosynthesis and metabolism of this lipid. We examined its FA composition and the incorporation of exogenous FA into LBPA in the human monocytic leukemia cell line THP-1. The LBPA FA composition in THP-1 cells exhibits an elevated amount of oleic acid (18:1n-9) and enrichment of PUFA, especially DHA (22:6n-3). DHA supplemented to the medium was efficiently incorporated into LBPA. In contrast, arachidonic acid (20:4n-6) was hardly esterified to LBPA under the same experimental conditions. The turnover of DHA in LBPA was similar to that in other phospholipids. Specific incorporation of DHA into LBPA was also observed in baby hamster kidney fibroblasts, although LBPA in these cells contains very low endogenous levels of DHA in normal growth conditions. Our resuIts, together with published observations, suggest that the specific incorporation of DHA into LBPA is a common phenomenon in mammalian cells. The physiological significance of DHA-enriched LBPA is discussed.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Lisofosfolipídeos/biossíntese , Monoglicerídeos/biossíntese , Animais , Ácido Araquidônico/metabolismo , Linhagem Celular Tumoral , Cricetinae , Endossomos/metabolismo , Humanos , Macrófagos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo
13.
J Biol Chem ; 278(23): 21155-61, 2003 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12657642

RESUMO

We previously described enterophilin-1 (Ent-1), a new intestinal protein bearing an extended leucine zipper and a B30.2 domain. Ent-1 expression is associated with growth arrest and enterocyte differentiation. To investigate the importance of Ent-1 in the differentiation, we performed a yeast two-hybrid screening. We identified sorting nexin 1 (SNX1) as a novel partner of Ent-1 and confirmed the specificity of interaction by co-immunoprecipitation experiments in mammalian cells. SNX1 is associated with endosomal membranes and triggers the endosome-to-lysosome pathway of epidermal growth factor receptor (EGFR). We observe by immunofluorescence microscopy that Ent-1 and SNX1 are co-localized on vesicular and tubulovesicular structures, which are different from early endosome antigen 1-containing endosomes. By gel filtration chromatography, we show that Ent-1 and SNX1 co-eluted in macromolecular complexes containing part of EGFR. Furthermore, overexpressed Ent-1 decreases cell surface EGFR. Ent-1 and SNX1 co-overexpression strongly extends EGFR diminution, indicating a synergetic effect of both proteins on cell surface EGFR removal. Interestingly, the increase of endogenous Ent-1 expression correlates with the decrease of EGFR during spontaneous differentiation of Caco-2 cells. We thus propose a role of Ent-1 in the trafficking of EGFR to down-regulate intestinal mitogenic signals, highlighting the mechanisms of cell growth arrest associated with enterocytic differentiation.


Assuntos
Proteínas de Transporte/metabolismo , Endocitose/fisiologia , Receptores ErbB/metabolismo , Proteínas de Transporte Vesicular , Animais , Células COS , Células CACO-2 , Proteínas de Transporte/genética , Diferenciação Celular , Endossomos/metabolismo , Enterócitos/citologia , Enterócitos/metabolismo , Biblioteca Gênica , Células HeLa , Humanos , Rim/citologia , Lisossomos/metabolismo , Substâncias Macromoleculares , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA