Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Viruses ; 13(2)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672327

RESUMO

The Bunyavirales order accommodates related viruses (bunyaviruses) with segmented, linear, single-stranded, negative- or ambi-sense RNA genomes. Their glycoproteins form capsomeric projections or spikes on the virion surface and play a crucial role in virus entry, assembly, morphogenesis. Bunyavirus glycoproteins are encoded by a single RNA segment as a polyprotein precursor that is co- and post-translationally cleaved by host cell enzymes to yield two mature glycoproteins, Gn and Gc (or GP1 and GP2 in arenaviruses). These glycoproteins undergo extensive N-linked glycosylation and despite their cleavage, remain associated to the virion to form an integral transmembrane glycoprotein complex. This review summarizes recent advances in our understanding of the molecular biology of bunyavirus glycoproteins, including their processing, structure, and known interactions with host factors that facilitate cell entry.


Assuntos
Infecções por Bunyaviridae/metabolismo , Orthobunyavirus/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Animais , Infecções por Bunyaviridae/genética , Infecções por Bunyaviridae/virologia , Humanos , Orthobunyavirus/química , Orthobunyavirus/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional , Receptores Virais/genética , Proteínas do Envelope Viral/genética
2.
Science ; 372(6544): 1-7, 2021. graf
Artigo em Inglês | LILACS, CONASS, ColecionaSUS, SES-SP, SESSP-IALPROD, SES-SP | ID: biblio-1247888

RESUMO

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.


Assuntos
Angiotensinas , Genoma , Betacoronavirus
3.
Proc Natl Acad Sci U S A ; 114(40): E8508-E8517, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923942

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) targets the epithelial cells of the respiratory tract both in humans and in its natural host, the dromedary camel. Virion attachment to host cells is mediated by 20-nm-long homotrimers of spike envelope protein S. The N-terminal subunit of each S protomer, called S1, folds into four distinct domains designated S1A through S1D Binding of MERS-CoV to the cell surface entry receptor dipeptidyl peptidase 4 (DPP4) occurs via S1B We now demonstrate that in addition to DPP4, MERS-CoV binds to sialic acid (Sia). Initially demonstrated by hemagglutination assay with human erythrocytes and intact virus, MERS-CoV Sia-binding activity was assigned to S subdomain S1A When multivalently displayed on nanoparticles, S1 or S1A bound to human erythrocytes and to human mucin in a strictly Sia-dependent fashion. Glycan array analysis revealed a preference for α2,3-linked Sias over α2,6-linked Sias, which correlates with the differential distribution of α2,3-linked Sias and the predominant sites of MERS-CoV replication in the upper and lower respiratory tracts of camels and humans, respectively. Binding is hampered by Sia modifications such as 5-N-glycolylation and (7,)9-O-acetylation. Depletion of cell surface Sia by neuraminidase treatment inhibited MERS-CoV entry of Calu-3 human airway cells, thus providing direct evidence that virus-Sia interactions may aid in virion attachment. The combined observations lead us to propose that high-specificity, low-affinity attachment of MERS-CoV to sialoglycans during the preattachment or early attachment phase may form another determinant governing the host range and tissue tropism of this zoonotic pathogen.


Assuntos
Infecções por Coronavirus/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Polissacarídeos/metabolismo , Receptores Virais/metabolismo , Ácidos Siálicos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Camelus , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Humanos , Mucinas , Glicoproteína da Espícula de Coronavírus/genética , Ligação Viral
4.
Cell Host Microbe ; 21(3): 356-366, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28279346

RESUMO

Human beta1-coronavirus (ß1CoV) OC43 emerged relatively recently through a single zoonotic introduction. Like related animal ß1CoVs, OC43 uses 9-O-acetylated sialic acid as receptor determinant. ß1CoV receptor binding is typically controlled by attachment/fusion spike protein S and receptor-binding/receptor-destroying hemagglutinin-esterase protein HE. We show that following OC43's introduction into humans, HE-mediated receptor binding was selected against and ultimately lost through progressive accumulation of mutations in the HE lectin domain. Consequently, virion-associated receptor-destroying activity toward multivalent glycoconjugates was reduced and altered such that some clustered receptor populations are no longer cleaved. Loss of HE lectin function was also observed for another respiratory human coronavirus, HKU1. This thus appears to be an adaptation to the sialoglycome of the human respiratory tract and for replication in human airways. The findings suggest that the dynamics of virion-glycan interactions contribute to host tropism. Our observations are relevant also to other human respiratory viruses of zoonotic origin, particularly influenza A virus.


Assuntos
Adaptação Biológica , Coronavirus Humano OC43/genética , Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Lectinas/genética , Lectinas/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Ligação Viral , Animais , Coronavirus Humano OC43/fisiologia , Humanos , Mutação , Ligação Proteica , Receptores Virais/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(22): E3111-9, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185912

RESUMO

Hemagglutinin-esterases (HEs) are bimodular envelope proteins of orthomyxoviruses, toroviruses, and coronaviruses with a carbohydrate-binding "lectin" domain appended to a receptor-destroying sialate-O-acetylesterase ("esterase"). In concert, these domains facilitate dynamic virion attachment to cell-surface sialoglycans. Most HEs (type I) target 9-O-acetylated sialic acids (9-O-Ac-Sias), but one group of coronaviruses switched to using 4-O-Ac-Sias instead (type II). This specificity shift required quasisynchronous adaptations in the Sia-binding sites of both lectin and esterase domains. Previously, a partially disordered crystal structure of a type II HE revealed how the shift in lectin ligand specificity was achieved. How the switch in esterase substrate specificity was realized remained unresolved, however. Here, we present a complete structure of a type II HE with a receptor analog in the catalytic site and identify the mutations underlying the 9-O- to 4-O-Ac-Sia substrate switch. We show that (i) common principles pertaining to the stereochemistry of protein-carbohydrate interactions were at the core of the transition in lectin ligand and esterase substrate specificity; (ii) in consequence, the switch in O-Ac-Sia specificity could be readily accomplished via convergent intramolecular coevolution with only modest architectural changes in lectin and esterase domains; and (iii) a single, inconspicuous Ala-to-Ser substitution in the catalytic site was key to the emergence of the type II HEs. Our findings provide fundamental insights into how proteins "see" sugars and how this affects protein and virus evolution.


Assuntos
Coronavirus/enzimologia , Hemaglutininas Virais/metabolismo , Lectinas/metabolismo , Mutação/genética , Receptores Virais/metabolismo , Ácidos Siálicos/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Colo/metabolismo , Cristalografia por Raios X , Hemaglutininas Virais/química , Hemaglutininas Virais/genética , Humanos , Lectinas/química , Camundongos , Simulação de Acoplamento Molecular , Receptores de Coronavírus , Receptores Virais/química , Receptores Virais/genética , Ácidos Siálicos/química , Estereoisomerismo , Especificidade por Substrato , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética
6.
Cell Rep ; 11(12): 1966-78, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26095364

RESUMO

Sialic acids (Sias), 9-carbon-backbone sugars, are among the most complex and versatile molecules of life. As terminal residues of glycans on proteins and lipids, Sias are key elements of glycotopes of both cellular and microbial lectins and thus act as important molecular tags in cell recognition and signaling events. Their functions in such interactions can be regulated by post-synthetic modifications, the most common of which is differential Sia-O-acetylation (O-Ac-Sias). The biology of O-Ac-Sias remains mostly unexplored, largely because of limitations associated with their specific in situ detection. Here, we show that dual-function hemagglutinin-esterase envelope proteins of nidoviruses distinguish between a variety of closely related O-Ac-Sias. By using soluble forms of hemagglutinin-esterases as lectins and sialate-O-acetylesterases, we demonstrate differential expression of distinct O-Ac-sialoglycan populations in an organ-, tissue- and cell-specific fashion. Our findings indicate that programmed Sia-O-acetylation/de-O-acetylation may be critical to key aspects of cell development, homeostasis, and/or function.


Assuntos
Acetilesterase/biossíntese , Hemaglutininas Virais/genética , Ácido N-Acetilneuramínico/genética , Ácidos Siálicos/genética , Proteínas Virais de Fusão/genética , Acetilação , Acetilesterase/genética , Animais , Regulação da Expressão Gênica , Genoma , Hemaglutininas Virais/química , Hemaglutininas Virais/metabolismo , Humanos , Lipídeos/química , Lipídeos/genética , Mamíferos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Nidovirales/química , Proteínas/química , Proteínas/genética , Ácidos Siálicos/química , Especificidade da Espécie , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA